基于小增益的混合系统稳定控制:双足行走机器人的应用

IF 2.2 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS IET Control Theory and Applications Pub Date : 2024-01-04 DOI:10.1049/cth2.12612
Fatemeh Khademian, Mehdi Rahmani
{"title":"基于小增益的混合系统稳定控制:双足行走机器人的应用","authors":"Fatemeh Khademian,&nbsp;Mehdi Rahmani","doi":"10.1049/cth2.12612","DOIUrl":null,"url":null,"abstract":"<p>This study presents a systematic methodology for developing a stabilizing controller for a general hybrid systems model. The approach is based on utilizing the small-gain theorem as a means of constructing the Lyapunov function and analyzing the input–output stability of the subsystems in the feedback loop. By considering the control system in a closed-loop configuration with the hybrid system, the small-gain theorem can be applied. In this scheme, a dynamic control system is proposed that satisfies the closed-loop stability conditions. This method applies to various hybrid systems' applications due to its generality. To demonstrate the effectiveness and performance of the proposed control approach, two simulation examples, including a linear hybrid system and a bipedal walking robot, are examined.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12612","citationCount":"0","resultStr":"{\"title\":\"Small-gain based stabilizing control for hybrid systems: Application to bipedal walking robot\",\"authors\":\"Fatemeh Khademian,&nbsp;Mehdi Rahmani\",\"doi\":\"10.1049/cth2.12612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents a systematic methodology for developing a stabilizing controller for a general hybrid systems model. The approach is based on utilizing the small-gain theorem as a means of constructing the Lyapunov function and analyzing the input–output stability of the subsystems in the feedback loop. By considering the control system in a closed-loop configuration with the hybrid system, the small-gain theorem can be applied. In this scheme, a dynamic control system is proposed that satisfies the closed-loop stability conditions. This method applies to various hybrid systems' applications due to its generality. To demonstrate the effectiveness and performance of the proposed control approach, two simulation examples, including a linear hybrid system and a bipedal walking robot, are examined.</p>\",\"PeriodicalId\":50382,\"journal\":{\"name\":\"IET Control Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12612\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Control Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12612\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12612","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种为通用混合系统模型开发稳定控制器的系统方法。该方法利用小增益定理构建 Lyapunov 函数,并分析反馈回路中各子系统的输入输出稳定性。通过考虑控制系统与混合系统的闭环配置,可以应用小增益定理。在此方案中,提出了一种满足闭环稳定性条件的动态控制系统。由于其通用性,该方法适用于各种混合系统的应用。为了证明所提控制方法的有效性和性能,我们研究了两个仿真实例,包括线性混合系统和双足行走机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Small-gain based stabilizing control for hybrid systems: Application to bipedal walking robot

This study presents a systematic methodology for developing a stabilizing controller for a general hybrid systems model. The approach is based on utilizing the small-gain theorem as a means of constructing the Lyapunov function and analyzing the input–output stability of the subsystems in the feedback loop. By considering the control system in a closed-loop configuration with the hybrid system, the small-gain theorem can be applied. In this scheme, a dynamic control system is proposed that satisfies the closed-loop stability conditions. This method applies to various hybrid systems' applications due to its generality. To demonstrate the effectiveness and performance of the proposed control approach, two simulation examples, including a linear hybrid system and a bipedal walking robot, are examined.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Control Theory and Applications
IET Control Theory and Applications 工程技术-工程:电子与电气
CiteScore
5.70
自引率
7.70%
发文量
167
审稿时长
5.1 months
期刊介绍: IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces. Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed. Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.
期刊最新文献
Neuro-adaptive prescribed performance control for spacecraft rendezvous based on the fully-actuated system approach Adaptive polynomial Kalman filter for nonlinear state estimation in modified AR time series with fixed coefficients Observer-based adaptive control of vehicle platoon with uncertainty and input constraints An improved two-degree-of-freedom ADRC for asynchronous motor vector system Receding horizon control for persistent monitoring tasks with monitoring count requirements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1