José Andrés Santamaría Cordero, Hannia López Mena, Marisol Ledezma, Leslie W. Pineda, J. E. Duran Herrera
{"title":"利用卤化铋过氧化物作为固定光催化剂在 3D 打印微反应器中还原二氧化碳","authors":"José Andrés Santamaría Cordero, Hannia López Mena, Marisol Ledezma, Leslie W. Pineda, J. E. Duran Herrera","doi":"10.1088/1361-6439/ad1b1c","DOIUrl":null,"url":null,"abstract":"\n The rising concerns about CO2 levels in the atmosphere and energy dependency on non-renewable sources, such as fossil fuels, could find an integral solution in CO2 photocatalytic reduction. The present work explores two alternatives to the main hindering factors for this reaction, i.e., the reactor configuration and the photocatalyst utilized. A microreactor was designed and 3D printed, providing a cheap and versatile reaction platform. Three bismuth halide perovskites, Cs3Bi2Cl9, Cs3Bi2I9, and Cs4MnBi2Cl12, were synthesized and characterized by their band gaps (Eg); Cs3Bi2I9 presented the lowest Eg and was therefore chosen for further evaluation as potential CO2-reduction photocatalyst. Aqueous-phase photocatalytic CO2 reduction was achieved using this perovskite in the microreactor, obtaining CO as a reduction product with maximal production rates of 737 μmol gcat\n -1 h-1. The reaction system was evaluated under different flow rates and light intensities. A balance between space-time and reactant feed was found to define the behavior of CO concentration and production in the microreactor. For the light intensity, it was observed that as it increased, both CO production and concentration increased due to generating more electron-hole pairs, favoring the photocatalytic reaction. With these results, Cs3Bi2I9 perovskite immobilized in the designed microreactor demonstrates having great potential as an effective CO2 photocatalytic reduction system.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":"38 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon dioxide reduction utilizing a bismuth halide perovskite as immobilized photocatalyst in a 3D printed microreactor\",\"authors\":\"José Andrés Santamaría Cordero, Hannia López Mena, Marisol Ledezma, Leslie W. Pineda, J. E. Duran Herrera\",\"doi\":\"10.1088/1361-6439/ad1b1c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The rising concerns about CO2 levels in the atmosphere and energy dependency on non-renewable sources, such as fossil fuels, could find an integral solution in CO2 photocatalytic reduction. The present work explores two alternatives to the main hindering factors for this reaction, i.e., the reactor configuration and the photocatalyst utilized. A microreactor was designed and 3D printed, providing a cheap and versatile reaction platform. Three bismuth halide perovskites, Cs3Bi2Cl9, Cs3Bi2I9, and Cs4MnBi2Cl12, were synthesized and characterized by their band gaps (Eg); Cs3Bi2I9 presented the lowest Eg and was therefore chosen for further evaluation as potential CO2-reduction photocatalyst. Aqueous-phase photocatalytic CO2 reduction was achieved using this perovskite in the microreactor, obtaining CO as a reduction product with maximal production rates of 737 μmol gcat\\n -1 h-1. The reaction system was evaluated under different flow rates and light intensities. A balance between space-time and reactant feed was found to define the behavior of CO concentration and production in the microreactor. For the light intensity, it was observed that as it increased, both CO production and concentration increased due to generating more electron-hole pairs, favoring the photocatalytic reaction. With these results, Cs3Bi2I9 perovskite immobilized in the designed microreactor demonstrates having great potential as an effective CO2 photocatalytic reduction system.\",\"PeriodicalId\":16346,\"journal\":{\"name\":\"Journal of Micromechanics and Microengineering\",\"volume\":\"38 4\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechanics and Microengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6439/ad1b1c\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/ad1b1c","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Carbon dioxide reduction utilizing a bismuth halide perovskite as immobilized photocatalyst in a 3D printed microreactor
The rising concerns about CO2 levels in the atmosphere and energy dependency on non-renewable sources, such as fossil fuels, could find an integral solution in CO2 photocatalytic reduction. The present work explores two alternatives to the main hindering factors for this reaction, i.e., the reactor configuration and the photocatalyst utilized. A microreactor was designed and 3D printed, providing a cheap and versatile reaction platform. Three bismuth halide perovskites, Cs3Bi2Cl9, Cs3Bi2I9, and Cs4MnBi2Cl12, were synthesized and characterized by their band gaps (Eg); Cs3Bi2I9 presented the lowest Eg and was therefore chosen for further evaluation as potential CO2-reduction photocatalyst. Aqueous-phase photocatalytic CO2 reduction was achieved using this perovskite in the microreactor, obtaining CO as a reduction product with maximal production rates of 737 μmol gcat
-1 h-1. The reaction system was evaluated under different flow rates and light intensities. A balance between space-time and reactant feed was found to define the behavior of CO concentration and production in the microreactor. For the light intensity, it was observed that as it increased, both CO production and concentration increased due to generating more electron-hole pairs, favoring the photocatalytic reaction. With these results, Cs3Bi2I9 perovskite immobilized in the designed microreactor demonstrates having great potential as an effective CO2 photocatalytic reduction system.
期刊介绍:
Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data.
The journal is focussed on all aspects of:
-nano- and micro- mechanical systems
-nano- and micro- electomechanical systems
-nano- and micro- electrical and mechatronic systems
-nano- and micro- engineering
-nano- and micro- scale science
Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering.
Below are some examples of the topics that are included within the scope of the journal:
-MEMS and NEMS:
Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc.
-Fabrication techniques and manufacturing:
Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing.
-Packaging and Integration technologies.
-Materials, testing, and reliability.
-Micro- and nano-fluidics:
Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip.
-Lab-on-a-chip and micro- and nano-total analysis systems.
-Biomedical systems and devices:
Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces.
-Energy and power:
Including power MEMS/NEMS, energy harvesters, actuators, microbatteries.
-Electronics:
Including flexible electronics, wearable electronics, interface electronics.
-Optical systems.
-Robotics.