太阳风速度与极地极光形式进入极冠之间的相关性

IF 2.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Frontiers in Astronomy and Space Sciences Pub Date : 2024-01-03 DOI:10.3389/fspas.2023.1233060
G. Fasel, L. C. Lee, E. Lake, D. Csonge, B. Yonano, O. Bradley, J. Briggs, S. H. Lee, J. Mann, F. Sigernes, D. Lorentzen
{"title":"太阳风速度与极地极光形式进入极冠之间的相关性","authors":"G. Fasel, L. C. Lee, E. Lake, D. Csonge, B. Yonano, O. Bradley, J. Briggs, S. H. Lee, J. Mann, F. Sigernes, D. Lorentzen","doi":"10.3389/fspas.2023.1233060","DOIUrl":null,"url":null,"abstract":"In 1961, Dungey suggested that magnetic reconnection occurs due to the solar-terrestrial interaction. The interplanetary magnetic field (IMF) is thought to merge with Earth’s geomagnetic field (GMF). After the reconnection process the newly formed magnetic flux tube, consisting of both the IMF and GMF, moves anti-sunward. Poleward-moving auroral forms (PMAFs) are believed to be the ionospheric signatures of this process, which transfers magnetic flux from the dayside to the nightside. This paper looks at the connection between the solar wind speed and the motion of the PMAF as it moves from the auroral oval, anti-sunward, into the polar cap. PMAFs are identified using both the meridian scanning photometer (MSP) and colored all-sky camera (ASC). Once the PMAFs are identified, the PMAF-SLOPE, vα (units of degrees per time) and the angle (αPMAF) the PMAF makes with the horizontal (Time axis), in the MSP plot are calculated. These values (vα and αPMAF) are individually plotted against the vx-component of the solar wind speed and the flow speed (total solar wind speed). The plots generate linear a relationship between PMAF-SLOPEs, vα, [or PMAF angles (αPMAF)], and the vx-component of the solar wind speed (or the flow speed). A total of 57 PMAF events from 8 different days were associated with solar wind speeds (vx-component) ranging from 344 to 679 km/s. The first linear plot, between the PMAF-SLOPE and solar wind speed (vx-component), shows a high correlation: rvα=0.944. A second linear plot, between αPMAF and the solar wind speed (vx-component) shows a very high correlation: rαPMAF=0.973. The conclusions obtained from this statistical study are: 1) both the PMAF-SLOPE vα and αPMAF are highly correlated to the vx-component of the solar wind, increasing when vx increases and vice versa, 2) PMAFs must be connected to both the IMF and GMF and are dragged anti-sunward, mostly by the vx-component of the solar wind, and 3) PMAFs are indeed the ionospheric footprints of a newly formed magnetic flux tube, due to dayside magnetic reconnection, being transferred from the dayside to nightside.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"3 8","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlation between the solar wind speed and the passage of poleward-moving auroral forms into the polar cap\",\"authors\":\"G. Fasel, L. C. Lee, E. Lake, D. Csonge, B. Yonano, O. Bradley, J. Briggs, S. H. Lee, J. Mann, F. Sigernes, D. Lorentzen\",\"doi\":\"10.3389/fspas.2023.1233060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1961, Dungey suggested that magnetic reconnection occurs due to the solar-terrestrial interaction. The interplanetary magnetic field (IMF) is thought to merge with Earth’s geomagnetic field (GMF). After the reconnection process the newly formed magnetic flux tube, consisting of both the IMF and GMF, moves anti-sunward. Poleward-moving auroral forms (PMAFs) are believed to be the ionospheric signatures of this process, which transfers magnetic flux from the dayside to the nightside. This paper looks at the connection between the solar wind speed and the motion of the PMAF as it moves from the auroral oval, anti-sunward, into the polar cap. PMAFs are identified using both the meridian scanning photometer (MSP) and colored all-sky camera (ASC). Once the PMAFs are identified, the PMAF-SLOPE, vα (units of degrees per time) and the angle (αPMAF) the PMAF makes with the horizontal (Time axis), in the MSP plot are calculated. These values (vα and αPMAF) are individually plotted against the vx-component of the solar wind speed and the flow speed (total solar wind speed). The plots generate linear a relationship between PMAF-SLOPEs, vα, [or PMAF angles (αPMAF)], and the vx-component of the solar wind speed (or the flow speed). A total of 57 PMAF events from 8 different days were associated with solar wind speeds (vx-component) ranging from 344 to 679 km/s. The first linear plot, between the PMAF-SLOPE and solar wind speed (vx-component), shows a high correlation: rvα=0.944. A second linear plot, between αPMAF and the solar wind speed (vx-component) shows a very high correlation: rαPMAF=0.973. The conclusions obtained from this statistical study are: 1) both the PMAF-SLOPE vα and αPMAF are highly correlated to the vx-component of the solar wind, increasing when vx increases and vice versa, 2) PMAFs must be connected to both the IMF and GMF and are dragged anti-sunward, mostly by the vx-component of the solar wind, and 3) PMAFs are indeed the ionospheric footprints of a newly formed magnetic flux tube, due to dayside magnetic reconnection, being transferred from the dayside to nightside.\",\"PeriodicalId\":46793,\"journal\":{\"name\":\"Frontiers in Astronomy and Space Sciences\",\"volume\":\"3 8\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Astronomy and Space Sciences\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3389/fspas.2023.1233060\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Astronomy and Space Sciences","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3389/fspas.2023.1233060","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

1961 年,邓吉提出,磁重联的发生是由于日地相互作用。行星际磁场(IMF)被认为与地球的地磁场(GMF)合并。在重联过程之后,新形成的磁通管(由星际磁场和地磁场组成)向反太阳方向移动。极向移动极光(PMAF)被认为是这一过程的电离层特征,它将磁通量从日侧转移到夜侧。本文研究了极光椭圆形反向移动进入极盖时太阳风速度与极光椭圆形运动之间的联系。利用子午扫描光度计(MSP)和彩色全天空照相机(ASC)识别 PMAF。一旦识别出 PMAF,就可以计算出 MSP 图中的 PMAF-SLOPE、vα(单位:度/时间)和 PMAF 与水平方向(时间轴)的夹角 (αPMAF)。这些值(vα 和 αPMAF)分别与太阳风速和流速(太阳总风速)的 vx 分量相对应。这些曲线图在 PMAF-SLOPE、vα[或 PMAF 角 (αPMAF)]和太阳风速(或流速)的 vx 分量之间产生线性关系。在 8 个不同的日子里,共有 57 个 PMAF 事件与太阳风速度(vx 分量)有关,太阳风速度(vx 分量)从 344 公里/秒到 679 公里/秒不等。PMAF-SLOPE 与太阳风速度(vx 分量)之间的第一个线性图显示出高度相关性:rvα=0.944。αPMAF与太阳风速(vx分量)之间的第二张线性图显示出很高的相关性:rαPMAF=0.973。这项统计研究得出的结论是1)PMAF-SLOPE vα 和 αPMAF 都与太阳风的 vx 分量高度相关,当 vx 增大时,PMAF 增大,反之亦然;2)PMAF 必须与 IMF 和 GMF 相连,并且主要受太阳风 vx 分量的拖曳而反向向太阳移动;3)PMAF 确实是新形成的磁通量管的电离层足迹,由于日侧磁重联而从日侧转移到夜侧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Correlation between the solar wind speed and the passage of poleward-moving auroral forms into the polar cap
In 1961, Dungey suggested that magnetic reconnection occurs due to the solar-terrestrial interaction. The interplanetary magnetic field (IMF) is thought to merge with Earth’s geomagnetic field (GMF). After the reconnection process the newly formed magnetic flux tube, consisting of both the IMF and GMF, moves anti-sunward. Poleward-moving auroral forms (PMAFs) are believed to be the ionospheric signatures of this process, which transfers magnetic flux from the dayside to the nightside. This paper looks at the connection between the solar wind speed and the motion of the PMAF as it moves from the auroral oval, anti-sunward, into the polar cap. PMAFs are identified using both the meridian scanning photometer (MSP) and colored all-sky camera (ASC). Once the PMAFs are identified, the PMAF-SLOPE, vα (units of degrees per time) and the angle (αPMAF) the PMAF makes with the horizontal (Time axis), in the MSP plot are calculated. These values (vα and αPMAF) are individually plotted against the vx-component of the solar wind speed and the flow speed (total solar wind speed). The plots generate linear a relationship between PMAF-SLOPEs, vα, [or PMAF angles (αPMAF)], and the vx-component of the solar wind speed (or the flow speed). A total of 57 PMAF events from 8 different days were associated with solar wind speeds (vx-component) ranging from 344 to 679 km/s. The first linear plot, between the PMAF-SLOPE and solar wind speed (vx-component), shows a high correlation: rvα=0.944. A second linear plot, between αPMAF and the solar wind speed (vx-component) shows a very high correlation: rαPMAF=0.973. The conclusions obtained from this statistical study are: 1) both the PMAF-SLOPE vα and αPMAF are highly correlated to the vx-component of the solar wind, increasing when vx increases and vice versa, 2) PMAFs must be connected to both the IMF and GMF and are dragged anti-sunward, mostly by the vx-component of the solar wind, and 3) PMAFs are indeed the ionospheric footprints of a newly formed magnetic flux tube, due to dayside magnetic reconnection, being transferred from the dayside to nightside.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Astronomy and Space Sciences
Frontiers in Astronomy and Space Sciences ASTRONOMY & ASTROPHYSICS-
CiteScore
3.40
自引率
13.30%
发文量
363
审稿时长
14 weeks
期刊最新文献
Application of collisional analysis to the differential velocity of solar wind ions Sun-as-a-star variability of Hα and Ca II 854.2 nm lines Coherence of Elsässer Variables in the slow solar wind from 0.1 au to 0.3 au Forecasting solar flares with a transformer network Ultra-broadband infrared metamaterial absorber based on MDMDM structure for optical sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1