双层多晶石墨烯纳米带中的声子热传输:层间相互作用、晶粒尺寸和空位缺陷的影响

Zi-Qiang Yang, Muhammad Asif Shakoori, Hai-Peng Li
{"title":"双层多晶石墨烯纳米带中的声子热传输:层间相互作用、晶粒尺寸和空位缺陷的影响","authors":"Zi-Qiang Yang,&nbsp;Muhammad Asif Shakoori,&nbsp;Hai-Peng Li","doi":"10.1007/s43673-023-00111-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, molecular dynamics simulations have been employed to investigate the phonon thermal transport in bilayer polycrystalline graphene nanoribbon (pGNR/pGNR), compared with bilayer graphene nanoribbon (GNR/GNR) and pGNR/GNR heterostructure. The interfacial thermal resistance (ITR) of bilayer structures was also calculated using the heat dissipation method. The effects of interlayer interaction, grain size, and vacancy defects on ITR and in-plane phonon thermal conductivity of bilayer structures were investigated. It was found that the ITR as well as in-plane phonon thermal conductivity of pGNR/pGNR wa<u>s</u> less than that of pGNR/GNR and much less than that of GNR/GNR, for the same size. For the studied bilayer structures, both the ITR and in-plane phonon thermal conductivity decrease with increasing interlayer interactions. Moreover, ITR increases with increasing grain area size whereas decreases with increasing vacancy defects in pGNR-based bilayers. The introduction of pGNR interface roughness and vacancy defects results in an enhanced phonon coupling in pGNR-based bilayers compared to pure GNR/GNR bilayers. Presented simulation investigations will help to understand the interlayer thermal transport properties of polycrystalline graphene and provide essential guidance for experimentally regulating phonon thermal transport between layers of polycrystalline graphene.</p></div>","PeriodicalId":100007,"journal":{"name":"AAPPS Bulletin","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43673-023-00111-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Phonon thermal transport in bilayer polycrystalline graphene nanoribbons: effects of interlayer interaction, grain size, and vacancy defects\",\"authors\":\"Zi-Qiang Yang,&nbsp;Muhammad Asif Shakoori,&nbsp;Hai-Peng Li\",\"doi\":\"10.1007/s43673-023-00111-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, molecular dynamics simulations have been employed to investigate the phonon thermal transport in bilayer polycrystalline graphene nanoribbon (pGNR/pGNR), compared with bilayer graphene nanoribbon (GNR/GNR) and pGNR/GNR heterostructure. The interfacial thermal resistance (ITR) of bilayer structures was also calculated using the heat dissipation method. The effects of interlayer interaction, grain size, and vacancy defects on ITR and in-plane phonon thermal conductivity of bilayer structures were investigated. It was found that the ITR as well as in-plane phonon thermal conductivity of pGNR/pGNR wa<u>s</u> less than that of pGNR/GNR and much less than that of GNR/GNR, for the same size. For the studied bilayer structures, both the ITR and in-plane phonon thermal conductivity decrease with increasing interlayer interactions. Moreover, ITR increases with increasing grain area size whereas decreases with increasing vacancy defects in pGNR-based bilayers. The introduction of pGNR interface roughness and vacancy defects results in an enhanced phonon coupling in pGNR-based bilayers compared to pure GNR/GNR bilayers. Presented simulation investigations will help to understand the interlayer thermal transport properties of polycrystalline graphene and provide essential guidance for experimentally regulating phonon thermal transport between layers of polycrystalline graphene.</p></div>\",\"PeriodicalId\":100007,\"journal\":{\"name\":\"AAPPS Bulletin\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43673-023-00111-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPPS Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43673-023-00111-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPPS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43673-023-00111-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用分子动力学模拟研究了双层多晶石墨烯纳米带(pGNR/pGNR)与双层石墨烯纳米带(GNR/GNR)和 pGNR/GNR 异质结构中的声子热传输。此外,还利用散热法计算了双层结构的界面热阻(ITR)。研究了层间相互作用、晶粒尺寸和空位缺陷对双层结构的界面热阻和面内声子热导率的影响。研究发现,在尺寸相同的情况下,pGNR/pGNR 的 ITR 和面内声子热导率小于 pGNR/GNR,远小于 GNR/GNR。对于所研究的双层结构,ITR 和面内声子热导率都会随着层间相互作用的增加而降低。此外,在基于 pGNR 的双层结构中,ITR 随晶粒面积尺寸的增大而增大,而随空位缺陷的增大而减小。与纯 GNR/GNR 双层膜相比,pGNR 界面粗糙度和空位缺陷的引入增强了基于 pGNR 的双层膜中的声子耦合。上述模拟研究将有助于理解多晶石墨烯的层间热传输特性,并为实验调节多晶石墨烯层间声子热传输提供重要指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phonon thermal transport in bilayer polycrystalline graphene nanoribbons: effects of interlayer interaction, grain size, and vacancy defects

In this paper, molecular dynamics simulations have been employed to investigate the phonon thermal transport in bilayer polycrystalline graphene nanoribbon (pGNR/pGNR), compared with bilayer graphene nanoribbon (GNR/GNR) and pGNR/GNR heterostructure. The interfacial thermal resistance (ITR) of bilayer structures was also calculated using the heat dissipation method. The effects of interlayer interaction, grain size, and vacancy defects on ITR and in-plane phonon thermal conductivity of bilayer structures were investigated. It was found that the ITR as well as in-plane phonon thermal conductivity of pGNR/pGNR was less than that of pGNR/GNR and much less than that of GNR/GNR, for the same size. For the studied bilayer structures, both the ITR and in-plane phonon thermal conductivity decrease with increasing interlayer interactions. Moreover, ITR increases with increasing grain area size whereas decreases with increasing vacancy defects in pGNR-based bilayers. The introduction of pGNR interface roughness and vacancy defects results in an enhanced phonon coupling in pGNR-based bilayers compared to pure GNR/GNR bilayers. Presented simulation investigations will help to understand the interlayer thermal transport properties of polycrystalline graphene and provide essential guidance for experimentally regulating phonon thermal transport between layers of polycrystalline graphene.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
期刊最新文献
Correction: Intersections of ultracold atomic polarons and nuclear clusters: how is a chart of nuclides modified in dilute neutron matter? News and Views (11 & 12) Nuclear level lifetime measurements across varied ranges using the digital INGA at TIFR Neutron emission spectrometer in magnetic confinement fusion Fundamental understanding of voltage decay in Li-rich Mn-based layered oxides cathode materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1