越南胡志明市环境 PM2.5 的来源分配

IF 1.1 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES Asian Journal of Atmospheric Environment Pub Date : 2024-01-02 DOI:10.1007/s44273-023-00024-7
Ngoc Tran, Yusuke Fujii, Md Firoz Khan, To Thi Hien, Tran Hoang Minh, Hiroshi Okochi, Norimichi Takenaka
{"title":"越南胡志明市环境 PM2.5 的来源分配","authors":"Ngoc Tran,&nbsp;Yusuke Fujii,&nbsp;Md Firoz Khan,&nbsp;To Thi Hien,&nbsp;Tran Hoang Minh,&nbsp;Hiroshi Okochi,&nbsp;Norimichi Takenaka","doi":"10.1007/s44273-023-00024-7","DOIUrl":null,"url":null,"abstract":"<div><p>The emission sources of fine particulate matter (PM<sub>2.5</sub>) have not yet been fully identified in Ho Chi Minh City (HCMC), Vietnam, presenting difficulties to authorities in controlling air pollution efficiently. To address this issue, this study explores the source apportionment of PM<sub>2.5</sub> by the positive matrix factorization (PMF) model and identifies potential regional sources through the weighted concentration-weighted trajectory (WCWT) model based on the field observation data of PM<sub>2.5</sub> in HCMC. 24-h PM<sub>2.5</sub> samples were collected in central HCMC for a year (September 2019–August 2020). Herein, inductively coupled plasma mass spectroscopy was used to analyze trace elements, in addition to identifying PM<sub>2.5</sub> mass and other chemical species, such as water-soluble ions and carbonaceous species, reported in our former study. The PMF results showed that PM<sub>2.5</sub> in HCMC was dominated by anthropogenic-rich sources comprising biomass burning, coal combustion, transportation, and crustal origins (36.4% of PM<sub>2.5</sub> mass), followed by secondary ammonium sulfate (18.4%), sea salt (13.7%), road dust (9.6%), and coal and crude oil combustion (9.4%). WCWT results suggested that the geological sources of PM<sub>2.5</sub> were mainly from local areas and scattered to the northeast/southwest of HCMC. In addition, the long-range transport of PM<sub>2.5</sub> from surrounding countries was revealed during the assembly restriction and lockdown period in 2020.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":45358,"journal":{"name":"Asian Journal of Atmospheric Environment","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44273-023-00024-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Source apportionment of ambient PM2.5 in Ho Chi Minh City, Vietnam\",\"authors\":\"Ngoc Tran,&nbsp;Yusuke Fujii,&nbsp;Md Firoz Khan,&nbsp;To Thi Hien,&nbsp;Tran Hoang Minh,&nbsp;Hiroshi Okochi,&nbsp;Norimichi Takenaka\",\"doi\":\"10.1007/s44273-023-00024-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The emission sources of fine particulate matter (PM<sub>2.5</sub>) have not yet been fully identified in Ho Chi Minh City (HCMC), Vietnam, presenting difficulties to authorities in controlling air pollution efficiently. To address this issue, this study explores the source apportionment of PM<sub>2.5</sub> by the positive matrix factorization (PMF) model and identifies potential regional sources through the weighted concentration-weighted trajectory (WCWT) model based on the field observation data of PM<sub>2.5</sub> in HCMC. 24-h PM<sub>2.5</sub> samples were collected in central HCMC for a year (September 2019–August 2020). Herein, inductively coupled plasma mass spectroscopy was used to analyze trace elements, in addition to identifying PM<sub>2.5</sub> mass and other chemical species, such as water-soluble ions and carbonaceous species, reported in our former study. The PMF results showed that PM<sub>2.5</sub> in HCMC was dominated by anthropogenic-rich sources comprising biomass burning, coal combustion, transportation, and crustal origins (36.4% of PM<sub>2.5</sub> mass), followed by secondary ammonium sulfate (18.4%), sea salt (13.7%), road dust (9.6%), and coal and crude oil combustion (9.4%). WCWT results suggested that the geological sources of PM<sub>2.5</sub> were mainly from local areas and scattered to the northeast/southwest of HCMC. In addition, the long-range transport of PM<sub>2.5</sub> from surrounding countries was revealed during the assembly restriction and lockdown period in 2020.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":45358,\"journal\":{\"name\":\"Asian Journal of Atmospheric Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s44273-023-00024-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Atmospheric Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44273-023-00024-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Atmospheric Environment","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44273-023-00024-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

越南胡志明市(HCMC)的细颗粒物(PM2.5)排放源尚未完全确定,这给当局有效控制空气污染带来了困难。为解决这一问题,本研究基于胡志明市 PM2.5 的实地观测数据,通过正矩阵因式分解(PMF)模型探索 PM2.5 的来源分配,并通过加权浓度加权轨迹(WCWT)模型确定潜在的区域来源。在胡志明市中心采集了为期一年(2019 年 9 月至 2020 年 8 月)的 24 小时 PM2.5 样本。除了识别PM2.5质量和其他化学物种(如水溶性离子和碳质物种)外,我们还利用电感耦合等离子体质谱分析了痕量元素。PMF结果显示,胡志明市的PM2.5主要来自生物质燃烧、燃煤、运输和地壳来源等人为富集源(占PM2.5质量的36.4%),其次是二次硫酸铵(18.4%)、海盐(13.7%)、道路扬尘(9.6%)以及煤炭和原油燃烧(9.4%)。WCWT结果表明,PM2.5的地质来源主要来自本地,分散在胡志明市的东北/西南地区。此外,在 2020 年装配限制和封锁期间,PM2.5 从周边国家的长程飘移也被揭示出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Source apportionment of ambient PM2.5 in Ho Chi Minh City, Vietnam

The emission sources of fine particulate matter (PM2.5) have not yet been fully identified in Ho Chi Minh City (HCMC), Vietnam, presenting difficulties to authorities in controlling air pollution efficiently. To address this issue, this study explores the source apportionment of PM2.5 by the positive matrix factorization (PMF) model and identifies potential regional sources through the weighted concentration-weighted trajectory (WCWT) model based on the field observation data of PM2.5 in HCMC. 24-h PM2.5 samples were collected in central HCMC for a year (September 2019–August 2020). Herein, inductively coupled plasma mass spectroscopy was used to analyze trace elements, in addition to identifying PM2.5 mass and other chemical species, such as water-soluble ions and carbonaceous species, reported in our former study. The PMF results showed that PM2.5 in HCMC was dominated by anthropogenic-rich sources comprising biomass burning, coal combustion, transportation, and crustal origins (36.4% of PM2.5 mass), followed by secondary ammonium sulfate (18.4%), sea salt (13.7%), road dust (9.6%), and coal and crude oil combustion (9.4%). WCWT results suggested that the geological sources of PM2.5 were mainly from local areas and scattered to the northeast/southwest of HCMC. In addition, the long-range transport of PM2.5 from surrounding countries was revealed during the assembly restriction and lockdown period in 2020.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asian Journal of Atmospheric Environment
Asian Journal of Atmospheric Environment METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
2.80
自引率
6.70%
发文量
22
审稿时长
21 weeks
期刊最新文献
Characteristic of PM2.5 concentration and source apportionment during winter in Seosan, Korea A case study on the effect of contaminated inlet tubes on the accuracy of mid-cost optical particle counters for the ambient air monitoring of fine particles Vertical profile measurements for ammonia in a Japanese deciduous forest using denuder sampling technique: ammonia emissions near the forest floor Assessment of vehicle exhaust PM emissions using high-resolution on-road measurements in Seoul, Korea Satellite measurement data-based assessment of spatiotemporal characteristics of ultraviolet index (UVI) over the state of Johor, Malaysia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1