{"title":"针对各种土壤质地和气候条件的水分保持数据的新经验点植被转移函数","authors":"","doi":"10.1016/j.iswcr.2024.01.001","DOIUrl":null,"url":null,"abstract":"<div><div>Knowing soil hydraulic properties is essential to support soil use and management practices; however, their measuring is commonly expensive and time-consuming. Thus, pedotransfer functions (PTFs) have been used to quantify physical properties such as the soil water retention curve (SWRC). SWRC relates the volumetric soil water content (<em>θ</em>) as a function of the matric potential (<em>h</em>) and plays a vital role in soil hydraulic modeling. Point-PTFs estimate key-points of the SWRC, often from measured texture, bulk density, and organic matter. This study aimed to formulate new point-PTFs to estimate <em>θ</em>(<em>h)</em> data ranging from <em>θ(-0.1 m)</em> to <em>θ(-150 m)</em> to be applied in subtropical, tropical and temperate soils. The PTF equations were derived from linear and non-linear regressions of measured soil physical properties against to the water retention data. The prediction performance of the new-formulated PTFs overcame the performance of already existing and widely-known PTFs recognized in the literature and can be, therefore, applied in soil water retention topics under a wider textural range.</div></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"12 4","pages":"Pages 855-867"},"PeriodicalIF":7.3000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New empirical-point pedotransfer functions for water retention data for a wide range of soil texture and climates\",\"authors\":\"\",\"doi\":\"10.1016/j.iswcr.2024.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Knowing soil hydraulic properties is essential to support soil use and management practices; however, their measuring is commonly expensive and time-consuming. Thus, pedotransfer functions (PTFs) have been used to quantify physical properties such as the soil water retention curve (SWRC). SWRC relates the volumetric soil water content (<em>θ</em>) as a function of the matric potential (<em>h</em>) and plays a vital role in soil hydraulic modeling. Point-PTFs estimate key-points of the SWRC, often from measured texture, bulk density, and organic matter. This study aimed to formulate new point-PTFs to estimate <em>θ</em>(<em>h)</em> data ranging from <em>θ(-0.1 m)</em> to <em>θ(-150 m)</em> to be applied in subtropical, tropical and temperate soils. The PTF equations were derived from linear and non-linear regressions of measured soil physical properties against to the water retention data. The prediction performance of the new-formulated PTFs overcame the performance of already existing and widely-known PTFs recognized in the literature and can be, therefore, applied in soil water retention topics under a wider textural range.</div></div>\",\"PeriodicalId\":48622,\"journal\":{\"name\":\"International Soil and Water Conservation Research\",\"volume\":\"12 4\",\"pages\":\"Pages 855-867\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Soil and Water Conservation Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095633924000017\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633924000017","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
New empirical-point pedotransfer functions for water retention data for a wide range of soil texture and climates
Knowing soil hydraulic properties is essential to support soil use and management practices; however, their measuring is commonly expensive and time-consuming. Thus, pedotransfer functions (PTFs) have been used to quantify physical properties such as the soil water retention curve (SWRC). SWRC relates the volumetric soil water content (θ) as a function of the matric potential (h) and plays a vital role in soil hydraulic modeling. Point-PTFs estimate key-points of the SWRC, often from measured texture, bulk density, and organic matter. This study aimed to formulate new point-PTFs to estimate θ(h) data ranging from θ(-0.1 m) to θ(-150 m) to be applied in subtropical, tropical and temperate soils. The PTF equations were derived from linear and non-linear regressions of measured soil physical properties against to the water retention data. The prediction performance of the new-formulated PTFs overcame the performance of already existing and widely-known PTFs recognized in the literature and can be, therefore, applied in soil water retention topics under a wider textural range.
期刊介绍:
The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation.
The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards.
Examples of appropriate topical areas include (but are not limited to):
• Conservation models, tools, and technologies
• Conservation agricultural
• Soil health resources, indicators, assessment, and management
• Land degradation
• Sustainable development
• Soil erosion and its control
• Soil erosion processes
• Water resources assessment and management
• Watershed management
• Soil erosion models
• Literature review on topics related soil and water conservation research