基于生物炭的氮肥施用对水稻生长土壤中氨挥发的影响:实验室规模密闭室研究

M. Jayarathna, R. S. Dharmakeerthi, A. D. Igalavithana
{"title":"基于生物炭的氮肥施用对水稻生长土壤中氨挥发的影响:实验室规模密闭室研究","authors":"M. Jayarathna, R. S. Dharmakeerthi, A. D. Igalavithana","doi":"10.4038/tar.v35i1.8702","DOIUrl":null,"url":null,"abstract":"Ammonia Volatilization (AV) in rice growing soils is one of the major pathways to lower the use efficiency of added nitrogen (N) fertilizers. Direct broadcasting of urea facilitates AV by increasing the substrate availability. Urea intercalated biochar (BC_U) can be a novel approach that could improve N use efficiency and reduce AV in paddy cultivation. Therefore, a laboratory experiment was conducted to quantify the effect of BC_U pellets on AV losses and N dynamics in a rice growing Entisol. We determined the changes in soil urease activity (UA) and pH buffer capacity (pHBC) after application of BC_U to soil under flooded or saturated conditions. Treatments were zero application of N (control), urea (U) and BC_U pellets added at a rate of 23 mg N kg soil-1. Under saturated conditions, significantly higher NH4+ concentration in soil solution was observed in urea added soils and the highest NO3- was observed in U. Under flooded conditions, a significantly higher NH4+ was in U and NO3- was not affected by urea application. In general, AV losses were very small under the investigated experimental conditions and it varied from 0 to 2.72 % of added urea. Under saturated conditions, AV was significantly (p<0.05) higher in U (2.72 %) and BC_U (1.21 %) than in the Control (0 %). Under flooded conditions, only U showed a significant AV (2.42 %; p<0.05). The pH buffer capacity (11-12 mmols kg-1 pH-1) and urease activity (6.3 - 8.5 μg NH4+-N g-1 hr-1) did not significantly changed (p>0.05) by N treatments. Although there was a small AV loss (<3 %) after N application, it could be further reduced by application of urea as BC_U and/or maintaining a flood water layer for few days after N application.","PeriodicalId":23313,"journal":{"name":"Tropical agricultural research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Biochar Based N Fertilizer Application on Ammonia Volatilization from a Rice Growing Soil: A Laboratory Scale Closed Chamber Study\",\"authors\":\"M. Jayarathna, R. S. Dharmakeerthi, A. D. Igalavithana\",\"doi\":\"10.4038/tar.v35i1.8702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ammonia Volatilization (AV) in rice growing soils is one of the major pathways to lower the use efficiency of added nitrogen (N) fertilizers. Direct broadcasting of urea facilitates AV by increasing the substrate availability. Urea intercalated biochar (BC_U) can be a novel approach that could improve N use efficiency and reduce AV in paddy cultivation. Therefore, a laboratory experiment was conducted to quantify the effect of BC_U pellets on AV losses and N dynamics in a rice growing Entisol. We determined the changes in soil urease activity (UA) and pH buffer capacity (pHBC) after application of BC_U to soil under flooded or saturated conditions. Treatments were zero application of N (control), urea (U) and BC_U pellets added at a rate of 23 mg N kg soil-1. Under saturated conditions, significantly higher NH4+ concentration in soil solution was observed in urea added soils and the highest NO3- was observed in U. Under flooded conditions, a significantly higher NH4+ was in U and NO3- was not affected by urea application. In general, AV losses were very small under the investigated experimental conditions and it varied from 0 to 2.72 % of added urea. Under saturated conditions, AV was significantly (p<0.05) higher in U (2.72 %) and BC_U (1.21 %) than in the Control (0 %). Under flooded conditions, only U showed a significant AV (2.42 %; p<0.05). The pH buffer capacity (11-12 mmols kg-1 pH-1) and urease activity (6.3 - 8.5 μg NH4+-N g-1 hr-1) did not significantly changed (p>0.05) by N treatments. Although there was a small AV loss (<3 %) after N application, it could be further reduced by application of urea as BC_U and/or maintaining a flood water layer for few days after N application.\",\"PeriodicalId\":23313,\"journal\":{\"name\":\"Tropical agricultural research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical agricultural research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4038/tar.v35i1.8702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical agricultural research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4038/tar.v35i1.8702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水稻生长土壤中的氨挥发(AV)是降低氮肥利用效率的主要途径之一。直接播撒尿素可增加基质的可用性,从而促进氨挥发。尿素夹层生物炭(BC_U)可以作为一种新方法,在水稻种植中提高氮的利用效率并降低氮的转化效率。因此,我们进行了一项实验室实验,以量化 BC_U 颗粒对水稻生长 Entisol 中反式脂肪酸损失和氮动态的影响。我们测定了在淹水或饱和条件下向土壤施用 BC_U 后土壤脲酶活性(UA)和 pH 缓冲能力(pHBC)的变化。处理为零施氮(对照)、施尿素(U)和以 23 毫克氮千克土-1 的比例添加 BC_U 颗粒。在饱和条件下,添加尿素的土壤溶液中的 NH4+ 浓度明显更高,而尿素中的 NO3- 浓度最高;在淹水条件下,尿素中的 NH4+ 浓度明显更高,而 NO3- 浓度不受尿素施用的影响。一般来说,在调查的实验条件下,AV 的损失非常小,从添加尿素的 0% 到 2.72% 不等。在饱和条件下,氮处理对 AV 有显著影响(p0.05)。虽然施用氮肥后 AV 损失较小(<3%),但通过施用 BC_U 尿素和/或在施用氮肥后几天保持淹没水层,可以进一步减少 AV 损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Biochar Based N Fertilizer Application on Ammonia Volatilization from a Rice Growing Soil: A Laboratory Scale Closed Chamber Study
Ammonia Volatilization (AV) in rice growing soils is one of the major pathways to lower the use efficiency of added nitrogen (N) fertilizers. Direct broadcasting of urea facilitates AV by increasing the substrate availability. Urea intercalated biochar (BC_U) can be a novel approach that could improve N use efficiency and reduce AV in paddy cultivation. Therefore, a laboratory experiment was conducted to quantify the effect of BC_U pellets on AV losses and N dynamics in a rice growing Entisol. We determined the changes in soil urease activity (UA) and pH buffer capacity (pHBC) after application of BC_U to soil under flooded or saturated conditions. Treatments were zero application of N (control), urea (U) and BC_U pellets added at a rate of 23 mg N kg soil-1. Under saturated conditions, significantly higher NH4+ concentration in soil solution was observed in urea added soils and the highest NO3- was observed in U. Under flooded conditions, a significantly higher NH4+ was in U and NO3- was not affected by urea application. In general, AV losses were very small under the investigated experimental conditions and it varied from 0 to 2.72 % of added urea. Under saturated conditions, AV was significantly (p<0.05) higher in U (2.72 %) and BC_U (1.21 %) than in the Control (0 %). Under flooded conditions, only U showed a significant AV (2.42 %; p<0.05). The pH buffer capacity (11-12 mmols kg-1 pH-1) and urease activity (6.3 - 8.5 μg NH4+-N g-1 hr-1) did not significantly changed (p>0.05) by N treatments. Although there was a small AV loss (<3 %) after N application, it could be further reduced by application of urea as BC_U and/or maintaining a flood water layer for few days after N application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
Production and Dietary Diversities with Seasonality in Rural Agricultural Context in Sri Lanka: A Case of Mahakanumulla Village Tank Cascade System Changes in Total and Available K Contents in Feldspar and Mica Co-pyrolyzed with Poultry Litter at Different Temperatures Introducing a ‘Postharvest Loss Index (PHLI)’ for Some Selected High Producing Vegetables in Sri Lanka to Enhance Food Security Behavioral Intention of Paddy Farmers Towards Adoption of Organic Sources for Soil Nutrient Management Consequent to Policy Decision to Ban Agro-chemicals in Sri Lanka: A Case Study Solid Formulation of Trichoderma virens for the Management of Banana Anthracnose Caused by Colletotrichum musae
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1