{"title":"原流变学","authors":"Mohammad Tanver Hossain, Randy H. Ewoldt","doi":"10.1122/8.0000667","DOIUrl":null,"url":null,"abstract":"We all instinctively poke, bounce, scoop, and observe materials to understand rheological properties quickly. Yet, these observations are rarely analyzed quantitatively. To address this, here we introduce the paradigm of protorheology: approximate quantitative inference from simple observations. Several case studies demonstrate how protorheology is an inclusive entry to rheology for a broad range of practitioners and strengthens the confidence and interpretation of accurate laboratory measurements. We survey a range of creative tests according to which rheological phenomenon is revealed. Some new working equations are derived, and all working equations are summarized for convenient reference and comparison across different methods. This establishes a framework to enable increased use of photos, videos, and quantitative inference and to support the increasing interest in digital image analysis, inverse methods, and high-throughput characterization being applied to rheological properties.","PeriodicalId":508264,"journal":{"name":"Journal of Rheology","volume":"128 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Protorheology\",\"authors\":\"Mohammad Tanver Hossain, Randy H. Ewoldt\",\"doi\":\"10.1122/8.0000667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We all instinctively poke, bounce, scoop, and observe materials to understand rheological properties quickly. Yet, these observations are rarely analyzed quantitatively. To address this, here we introduce the paradigm of protorheology: approximate quantitative inference from simple observations. Several case studies demonstrate how protorheology is an inclusive entry to rheology for a broad range of practitioners and strengthens the confidence and interpretation of accurate laboratory measurements. We survey a range of creative tests according to which rheological phenomenon is revealed. Some new working equations are derived, and all working equations are summarized for convenient reference and comparison across different methods. This establishes a framework to enable increased use of photos, videos, and quantitative inference and to support the increasing interest in digital image analysis, inverse methods, and high-throughput characterization being applied to rheological properties.\",\"PeriodicalId\":508264,\"journal\":{\"name\":\"Journal of Rheology\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rheology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1122/8.0000667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rheology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1122/8.0000667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We all instinctively poke, bounce, scoop, and observe materials to understand rheological properties quickly. Yet, these observations are rarely analyzed quantitatively. To address this, here we introduce the paradigm of protorheology: approximate quantitative inference from simple observations. Several case studies demonstrate how protorheology is an inclusive entry to rheology for a broad range of practitioners and strengthens the confidence and interpretation of accurate laboratory measurements. We survey a range of creative tests according to which rheological phenomenon is revealed. Some new working equations are derived, and all working equations are summarized for convenient reference and comparison across different methods. This establishes a framework to enable increased use of photos, videos, and quantitative inference and to support the increasing interest in digital image analysis, inverse methods, and high-throughput characterization being applied to rheological properties.