利用高熵效应抑制 Ge-Fe-Co-Ni-Mn 薄膜中的相位偏析

Sen Sun, Wenyu Jiang, Qinxin Liu, Yueyong Jiang, Tianyi Zhu, Jie Hu, Honglian Song, Zheng Yang, Xinfeng Hui, Yuanxia Lao
{"title":"利用高熵效应抑制 Ge-Fe-Co-Ni-Mn 薄膜中的相位偏析","authors":"Sen Sun, Wenyu Jiang, Qinxin Liu, Yueyong Jiang, Tianyi Zhu, Jie Hu, Honglian Song, Zheng Yang, Xinfeng Hui, Yuanxia Lao","doi":"10.1116/6.0003164","DOIUrl":null,"url":null,"abstract":"Fe–Co–Ni–Mn films doped with different concentrations of Ge were prepared on the Si substrates by using radio frequency magnetron sputtering. Transmission electron microscopy (with an energy dispersive x-ray spectrometer) and an x-ray diffractometer were used to systematically study the microstructure evolution of the Fe–Co–Ni–Mn–Ge films. The results indicate that the Fe–Co–Ni–Mn films doped with a large amount of Ge show significant element segregation after rapid high-temperature annealing. However, with the decrease in the doping amount of Ge to approximately equal molar ratio with magnetic elements, Ge and magnetic elements achieve perfect mutual dissolution at the same annealing conditions, forming single-phase solid solution. Electrical transport tests suggest that its electrical property is close to semiconductors. The mechanism of enhanced mutual solubility between semiconductor elements and magnetic elements is discussed in detail.","PeriodicalId":509398,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppression of phase segregations in Ge–Fe–Co–Ni–Mn films by high-entropy effect\",\"authors\":\"Sen Sun, Wenyu Jiang, Qinxin Liu, Yueyong Jiang, Tianyi Zhu, Jie Hu, Honglian Song, Zheng Yang, Xinfeng Hui, Yuanxia Lao\",\"doi\":\"10.1116/6.0003164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fe–Co–Ni–Mn films doped with different concentrations of Ge were prepared on the Si substrates by using radio frequency magnetron sputtering. Transmission electron microscopy (with an energy dispersive x-ray spectrometer) and an x-ray diffractometer were used to systematically study the microstructure evolution of the Fe–Co–Ni–Mn–Ge films. The results indicate that the Fe–Co–Ni–Mn films doped with a large amount of Ge show significant element segregation after rapid high-temperature annealing. However, with the decrease in the doping amount of Ge to approximately equal molar ratio with magnetic elements, Ge and magnetic elements achieve perfect mutual dissolution at the same annealing conditions, forming single-phase solid solution. Electrical transport tests suggest that its electrical property is close to semiconductors. The mechanism of enhanced mutual solubility between semiconductor elements and magnetic elements is discussed in detail.\",\"PeriodicalId\":509398,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0003164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用射频磁控溅射技术在硅基底上制备了掺杂不同浓度 Ge 的铁-铜-镍-锰薄膜。使用透射电子显微镜(带能量色散 X 射线光谱仪)和 X 射线衍射仪系统地研究了铁-铜-镍-锰-锗薄膜的微观结构演变。结果表明,掺杂了大量 Ge 的铁-铜-镍-锰薄膜在快速高温退火后出现了明显的元素偏析。然而,随着 Ge 掺杂量减少到与磁性元素的摩尔比大致相等,在相同的退火条件下,Ge 和磁性元素实现了完美的相互溶解,形成了单相固溶体。电输运测试表明,其电性能接近半导体。本文详细讨论了半导体元素与磁性元素之间互溶性增强的机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Suppression of phase segregations in Ge–Fe–Co–Ni–Mn films by high-entropy effect
Fe–Co–Ni–Mn films doped with different concentrations of Ge were prepared on the Si substrates by using radio frequency magnetron sputtering. Transmission electron microscopy (with an energy dispersive x-ray spectrometer) and an x-ray diffractometer were used to systematically study the microstructure evolution of the Fe–Co–Ni–Mn–Ge films. The results indicate that the Fe–Co–Ni–Mn films doped with a large amount of Ge show significant element segregation after rapid high-temperature annealing. However, with the decrease in the doping amount of Ge to approximately equal molar ratio with magnetic elements, Ge and magnetic elements achieve perfect mutual dissolution at the same annealing conditions, forming single-phase solid solution. Electrical transport tests suggest that its electrical property is close to semiconductors. The mechanism of enhanced mutual solubility between semiconductor elements and magnetic elements is discussed in detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of sputtering and redeposition on the morphological profile evolution during ion-beam etching of blazed gratings Nitrogen-incorporated tetrahedral amorphous carbon optically transparent thin film electrode Effect of plasma discharge pulse length for GaN film crystallinity on sapphire substrate by high density convergent plasma sputtering device Inhibition of thermochemical erosion by different coatings attached to the barrel chamber at high temperature and supersonic environments Influence of high-temperature thermal annealing on paramagnetic point defects in silicon-rich silicon nitride films formed in a single-wafer-type low-pressure chemical vapor deposition reactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1