{"title":"阿坦加纳-巴莱阿努分式算子意义上的年龄结构疟疾模型建模与分析","authors":"Dawit Kechine Menbiko, Chernet Tuge Deressa","doi":"10.1155/2024/6652037","DOIUrl":null,"url":null,"abstract":"In this paper, integer- and fractional-order models are discussed to investigate the dynamics of malaria in a human host with a varied age distribution. A system of differential equation model with five human state variables and two mosquito state variables was examined. Preschool-age (0–5) and young-age individuals make up our model’s division of the human population. We investigated the existence of an area in which the model is both mathematically and epidemiologically well posed. According to the findings of our mathematical research, the disease-free equilibrium exists whenever the fundamental reproduction number <svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 13.1624 11.927\" width=\"13.1624pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"></path></g></svg> is smaller than one and is asymptotically stable. The disease-free equilibrium point is unstable when <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 24.295 11.927\" width=\"24.295pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"><use xlink:href=\"#g50-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.664,0)\"></path></g></svg><span></span><span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"27.8771838 -8.6359 6.422 11.927\" width=\"6.422pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,27.927,0)\"></path></g></svg>.</span></span> We showed that the endemic equilibrium point is unique for <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 24.295 11.927\" width=\"24.295pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"><use xlink:href=\"#g50-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.664,0)\"><use xlink:href=\"#g117-92\"></use></g></svg><span></span><span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"27.8771838 -8.6359 6.422 11.927\" width=\"6.422pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,27.927,0)\"><use xlink:href=\"#g113-50\"></use></g></svg>.</span></span> Also, the most influential control parameters of the spread of malaria were identified. Numerical simulations of both classical and fractional order were conducted, and we used ODE (45) for classical part and numerical technique developed by Toufik and Atangana for fractional order. The infected population will grow because of the high biting frequency of the mosquito and the high likelihood of transmission from the infected mosquito to the susceptible human. <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 19.414 8.8423\" width=\"19.414pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.783,0)\"></path></g></svg><span></span><span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"22.9961838 -8.6359 28.187 8.8423\" width=\"28.187pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,23.046,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,29.286,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,32.25,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,38.49,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,44.73,0)\"><use xlink:href=\"#g113-51\"></use></g></svg>,</span></span> which is more than one, indicating that the mosquito vector keeps on growing. This supports the stability of the endemic equilibrium point theorem, which states that the disease becomes endemic when <span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 19.414 8.8423\" width=\"19.414pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.783,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><span><svg height=\"8.8423pt\" style=\"vertical-align:-0.2064009pt\" version=\"1.1\" viewbox=\"22.9961838 -8.6359 6.422 8.8423\" width=\"6.422pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,23.046,0)\"><use xlink:href=\"#g113-50\"></use></g></svg>.</span></span> The susceptible human population will decrease because of the presence of the infective mosquito, which has a high biting frequency for the first couple of days. Since the infective mosquito bit the susceptible human, the susceptible human became infected and went to the infected human compartments. Then, the susceptible population will decrease and the infested human population will increase. After a certain amount of time, it becomes zero due to the growth of protected classes. In this case, a disease-free equilibrium point exists and is stable. This condition exists because <span><svg height=\"14.7272pt\" style=\"vertical-align:-3.2911pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.4361 24.295 14.7272\" width=\"24.295pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"><use xlink:href=\"#g50-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.664,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><svg height=\"14.7272pt\" style=\"vertical-align:-3.2911pt\" version=\"1.1\" viewbox=\"27.8771838 -11.4361 38.463 14.7272\" width=\"38.463pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,27.927,0)\"><use xlink:href=\"#g113-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,34.167,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,37.131,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,43.371,0)\"><use xlink:href=\"#g113-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,49.611,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,58.759,0)\"></path></g></svg><span></span><svg height=\"14.7272pt\" style=\"vertical-align:-3.2911pt\" version=\"1.1\" viewbox=\"69.2451838 -11.4361 23.344 14.7272\" width=\"23.344pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,69.295,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,75.535,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,81.822,-5.741)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,87.382,-5.741)\"></path></g></svg></span> is less than 1. This supports the theorem that the stability of the disease-free equilibrium point is obtained when <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 24.295 11.927\" width=\"24.295pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"><use xlink:href=\"#g50-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.664,0)\"></path></g></svg><span></span><span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"27.8771838 -8.6359 6.422 11.927\" width=\"6.422pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,27.927,0)\"><use xlink:href=\"#g113-50\"></use></g></svg>.</span></span> Depending on equation, we have shown that the possibility of some endemic equilibria exists when <span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 24.295 11.927\" width=\"24.295pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"><use xlink:href=\"#g50-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.664,0)\"><use xlink:href=\"#g117-91\"></use></g></svg><span></span><span><svg height=\"11.927pt\" style=\"vertical-align:-3.291101pt\" version=\"1.1\" viewbox=\"27.8771838 -8.6359 6.422 11.927\" width=\"6.422pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,27.927,0)\"><use xlink:href=\"#g113-50\"></use></g></svg>,</span></span> that is, it undergoes backward bifurcation, even when the disease-free equilibrium is locally stable, and the result means that the society may misunderstand the level of malaria prevalence in the community.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"54 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and Analysis of an Age-Structured Malaria Model in the Sense of Atangana–Baleanu Fractional Operators\",\"authors\":\"Dawit Kechine Menbiko, Chernet Tuge Deressa\",\"doi\":\"10.1155/2024/6652037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, integer- and fractional-order models are discussed to investigate the dynamics of malaria in a human host with a varied age distribution. A system of differential equation model with five human state variables and two mosquito state variables was examined. Preschool-age (0–5) and young-age individuals make up our model’s division of the human population. We investigated the existence of an area in which the model is both mathematically and epidemiologically well posed. According to the findings of our mathematical research, the disease-free equilibrium exists whenever the fundamental reproduction number <svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 13.1624 11.927\\\" width=\\\"13.1624pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.086,3.132)\\\"></path></g></svg> is smaller than one and is asymptotically stable. The disease-free equilibrium point is unstable when <span><svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 24.295 11.927\\\" width=\\\"24.295pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-83\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.086,3.132)\\\"><use xlink:href=\\\"#g50-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,16.664,0)\\\"></path></g></svg><span></span><span><svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"27.8771838 -8.6359 6.422 11.927\\\" width=\\\"6.422pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,27.927,0)\\\"></path></g></svg>.</span></span> We showed that the endemic equilibrium point is unique for <span><svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 24.295 11.927\\\" width=\\\"24.295pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-83\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.086,3.132)\\\"><use xlink:href=\\\"#g50-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,16.664,0)\\\"><use xlink:href=\\\"#g117-92\\\"></use></g></svg><span></span><span><svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"27.8771838 -8.6359 6.422 11.927\\\" width=\\\"6.422pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,27.927,0)\\\"><use xlink:href=\\\"#g113-50\\\"></use></g></svg>.</span></span> Also, the most influential control parameters of the spread of malaria were identified. Numerical simulations of both classical and fractional order were conducted, and we used ODE (45) for classical part and numerical technique developed by Toufik and Atangana for fractional order. The infected population will grow because of the high biting frequency of the mosquito and the high likelihood of transmission from the infected mosquito to the susceptible human. <span><svg height=\\\"8.8423pt\\\" style=\\\"vertical-align:-0.2064009pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 19.414 8.8423\\\" width=\\\"19.414pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-83\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.783,0)\\\"></path></g></svg><span></span><span><svg height=\\\"8.8423pt\\\" style=\\\"vertical-align:-0.2064009pt\\\" version=\\\"1.1\\\" viewbox=\\\"22.9961838 -8.6359 28.187 8.8423\\\" width=\\\"28.187pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,23.046,0)\\\"><use xlink:href=\\\"#g113-50\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,29.286,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,32.25,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,38.49,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,44.73,0)\\\"><use xlink:href=\\\"#g113-51\\\"></use></g></svg>,</span></span> which is more than one, indicating that the mosquito vector keeps on growing. This supports the stability of the endemic equilibrium point theorem, which states that the disease becomes endemic when <span><svg height=\\\"8.8423pt\\\" style=\\\"vertical-align:-0.2064009pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 19.414 8.8423\\\" width=\\\"19.414pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-83\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.783,0)\\\"><use xlink:href=\\\"#g117-34\\\"></use></g></svg><span></span><span><svg height=\\\"8.8423pt\\\" style=\\\"vertical-align:-0.2064009pt\\\" version=\\\"1.1\\\" viewbox=\\\"22.9961838 -8.6359 6.422 8.8423\\\" width=\\\"6.422pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,23.046,0)\\\"><use xlink:href=\\\"#g113-50\\\"></use></g></svg>.</span></span> The susceptible human population will decrease because of the presence of the infective mosquito, which has a high biting frequency for the first couple of days. Since the infective mosquito bit the susceptible human, the susceptible human became infected and went to the infected human compartments. Then, the susceptible population will decrease and the infested human population will increase. After a certain amount of time, it becomes zero due to the growth of protected classes. In this case, a disease-free equilibrium point exists and is stable. This condition exists because <span><svg height=\\\"14.7272pt\\\" style=\\\"vertical-align:-3.2911pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -11.4361 24.295 14.7272\\\" width=\\\"24.295pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-83\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.086,3.132)\\\"><use xlink:href=\\\"#g50-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,16.664,0)\\\"><use xlink:href=\\\"#g117-34\\\"></use></g></svg><span></span><svg height=\\\"14.7272pt\\\" style=\\\"vertical-align:-3.2911pt\\\" version=\\\"1.1\\\" viewbox=\\\"27.8771838 -11.4361 38.463 14.7272\\\" width=\\\"38.463pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,27.927,0)\\\"><use xlink:href=\\\"#g113-51\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,34.167,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,37.131,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,43.371,0)\\\"><use xlink:href=\\\"#g113-51\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,49.611,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,58.759,0)\\\"></path></g></svg><span></span><svg height=\\\"14.7272pt\\\" style=\\\"vertical-align:-3.2911pt\\\" version=\\\"1.1\\\" viewbox=\\\"69.2451838 -11.4361 23.344 14.7272\\\" width=\\\"23.344pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,69.295,0)\\\"><use xlink:href=\\\"#g113-50\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,75.535,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,81.822,-5.741)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,87.382,-5.741)\\\"></path></g></svg></span> is less than 1. This supports the theorem that the stability of the disease-free equilibrium point is obtained when <span><svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 24.295 11.927\\\" width=\\\"24.295pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-83\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.086,3.132)\\\"><use xlink:href=\\\"#g50-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,16.664,0)\\\"></path></g></svg><span></span><span><svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"27.8771838 -8.6359 6.422 11.927\\\" width=\\\"6.422pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,27.927,0)\\\"><use xlink:href=\\\"#g113-50\\\"></use></g></svg>.</span></span> Depending on equation, we have shown that the possibility of some endemic equilibria exists when <span><svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 24.295 11.927\\\" width=\\\"24.295pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-83\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.086,3.132)\\\"><use xlink:href=\\\"#g50-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,16.664,0)\\\"><use xlink:href=\\\"#g117-91\\\"></use></g></svg><span></span><span><svg height=\\\"11.927pt\\\" style=\\\"vertical-align:-3.291101pt\\\" version=\\\"1.1\\\" viewbox=\\\"27.8771838 -8.6359 6.422 11.927\\\" width=\\\"6.422pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,27.927,0)\\\"><use xlink:href=\\\"#g113-50\\\"></use></g></svg>,</span></span> that is, it undergoes backward bifurcation, even when the disease-free equilibrium is locally stable, and the result means that the society may misunderstand the level of malaria prevalence in the community.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/6652037\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/6652037","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Modeling and Analysis of an Age-Structured Malaria Model in the Sense of Atangana–Baleanu Fractional Operators
In this paper, integer- and fractional-order models are discussed to investigate the dynamics of malaria in a human host with a varied age distribution. A system of differential equation model with five human state variables and two mosquito state variables was examined. Preschool-age (0–5) and young-age individuals make up our model’s division of the human population. We investigated the existence of an area in which the model is both mathematically and epidemiologically well posed. According to the findings of our mathematical research, the disease-free equilibrium exists whenever the fundamental reproduction number is smaller than one and is asymptotically stable. The disease-free equilibrium point is unstable when . We showed that the endemic equilibrium point is unique for . Also, the most influential control parameters of the spread of malaria were identified. Numerical simulations of both classical and fractional order were conducted, and we used ODE (45) for classical part and numerical technique developed by Toufik and Atangana for fractional order. The infected population will grow because of the high biting frequency of the mosquito and the high likelihood of transmission from the infected mosquito to the susceptible human. , which is more than one, indicating that the mosquito vector keeps on growing. This supports the stability of the endemic equilibrium point theorem, which states that the disease becomes endemic when . The susceptible human population will decrease because of the presence of the infective mosquito, which has a high biting frequency for the first couple of days. Since the infective mosquito bit the susceptible human, the susceptible human became infected and went to the infected human compartments. Then, the susceptible population will decrease and the infested human population will increase. After a certain amount of time, it becomes zero due to the growth of protected classes. In this case, a disease-free equilibrium point exists and is stable. This condition exists because is less than 1. This supports the theorem that the stability of the disease-free equilibrium point is obtained when . Depending on equation, we have shown that the possibility of some endemic equilibria exists when , that is, it undergoes backward bifurcation, even when the disease-free equilibrium is locally stable, and the result means that the society may misunderstand the level of malaria prevalence in the community.
期刊介绍:
Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.