沸石对水中某些有机氯污染物的吸附机理和增效作用

IF 2.8 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Chemistry Pub Date : 2024-01-08 DOI:10.1155/2024/4008315
Timothy Manda, Solomon Omwoma, Godfrey Okumu Barasa, Anthony M. Pembere, Douglas Sifuna, Livingstone Ochilo, Silas Lagat, Emily Ngeno, Patrick Ssebugere, Christine Betty Nagawa, Christine Kyarimpa
{"title":"沸石对水中某些有机氯污染物的吸附机理和增效作用","authors":"Timothy Manda, Solomon Omwoma, Godfrey Okumu Barasa, Anthony M. Pembere, Douglas Sifuna, Livingstone Ochilo, Silas Lagat, Emily Ngeno, Patrick Ssebugere, Christine Betty Nagawa, Christine Kyarimpa","doi":"10.1155/2024/4008315","DOIUrl":null,"url":null,"abstract":"This study investigates the adsorption capacities of selected organochlorines on zeolites, focusing on hexachlorobenzene (HCB), hexachlorotetradecane (HCTD), hexachlorodecane (HCD), hexachlorocyclohexane (HCH), heptachlorodecane (HPCD), octachlorodecane (OCD), dichlorodiphenyltrichloroethane (DDT), and octachlorotetradecane (OCTD). The structures of the organochlorines were optimized and their Frontier molecular orbitals were calculated. The analysis of HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energies provided insights into the molecules’ electron-donating and -accepting capabilities. The present research identified the universal force field as suitable for the investigation and used it to evaluate the adsorption capacities of the pollutants on various zeolites. It was found that CLO (a cubic microporous gallophosphate) demonstrated the highest adsorption capacity for HCB among 245 zeolites, with a loading capacity of 65.84 wt%. In terms of molecules adsorbed per cell, CLO remained the highest with 120 molecules per cell for HCB, 113 molecules per cell for HCH, 43 molecules per cell for DDT, 21 molecules per cell for HCTD, 19 molecules per cell for OCTD, 47 molecules per cell for HCD, 30 molecules per cell for HPCD, and 22 molecules per cell for OCD. The analysis revealed correlations between the structural parameters of zeolites (mass, density, HVF, APV, VSA, GSA, DPS, and Di) and their adsorption capacities. The investigation delved into cluster models to understand the interaction of organochlorines with the zeolite framework. The study explored the impact of doping CLO zeolite with different atoms (Al, Si, and Na) on adsorption capacity. The results showed that doping with aluminum improved both loading capacity and adsorption energy and dissociate the chlorinated compounds during adsorption. Quantum chemical calculations show that hydrogen-based bonding of the organochlorides on the CLO is thermodynamically favorable compared to dissociative adsorption. In addition, oxygen atoms in the zeolites provide active adsorption sites. In the present work, laboratory adsorption experiments were performed, treating zeolites with heat at 400°C. Surprisingly, untreated zeolites outperformed treated ones, adsorbing up to 91% of HCB, while treated zeolites reached saturation after the third run. The study attributed the better performance of untreated zeolites to the presence of interstitial water and hydrogen atoms, which are critical for electrostatic interactions with organic compounds. In general, this research provides a comprehensive analysis of the adsorption capacities of organochlorines on zeolites, combining computational simulations and laboratory experiments. This work’s distinctive quality is its methodology that combines molecular simulations, experimental verification, doping, and interstitial water effects. The findings emphasize the importance of zeolite (a high-porosity nanostructured material) structure, composition, and treatment methods in determining their effectiveness as adsorbents for environmental pollutants.","PeriodicalId":15348,"journal":{"name":"Journal of Chemistry","volume":"46 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sorption Mechanisms and Enhancement of Selected Organochlorine Pollutants in Water on Zeolites\",\"authors\":\"Timothy Manda, Solomon Omwoma, Godfrey Okumu Barasa, Anthony M. Pembere, Douglas Sifuna, Livingstone Ochilo, Silas Lagat, Emily Ngeno, Patrick Ssebugere, Christine Betty Nagawa, Christine Kyarimpa\",\"doi\":\"10.1155/2024/4008315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the adsorption capacities of selected organochlorines on zeolites, focusing on hexachlorobenzene (HCB), hexachlorotetradecane (HCTD), hexachlorodecane (HCD), hexachlorocyclohexane (HCH), heptachlorodecane (HPCD), octachlorodecane (OCD), dichlorodiphenyltrichloroethane (DDT), and octachlorotetradecane (OCTD). The structures of the organochlorines were optimized and their Frontier molecular orbitals were calculated. The analysis of HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energies provided insights into the molecules’ electron-donating and -accepting capabilities. The present research identified the universal force field as suitable for the investigation and used it to evaluate the adsorption capacities of the pollutants on various zeolites. It was found that CLO (a cubic microporous gallophosphate) demonstrated the highest adsorption capacity for HCB among 245 zeolites, with a loading capacity of 65.84 wt%. In terms of molecules adsorbed per cell, CLO remained the highest with 120 molecules per cell for HCB, 113 molecules per cell for HCH, 43 molecules per cell for DDT, 21 molecules per cell for HCTD, 19 molecules per cell for OCTD, 47 molecules per cell for HCD, 30 molecules per cell for HPCD, and 22 molecules per cell for OCD. The analysis revealed correlations between the structural parameters of zeolites (mass, density, HVF, APV, VSA, GSA, DPS, and Di) and their adsorption capacities. The investigation delved into cluster models to understand the interaction of organochlorines with the zeolite framework. The study explored the impact of doping CLO zeolite with different atoms (Al, Si, and Na) on adsorption capacity. The results showed that doping with aluminum improved both loading capacity and adsorption energy and dissociate the chlorinated compounds during adsorption. Quantum chemical calculations show that hydrogen-based bonding of the organochlorides on the CLO is thermodynamically favorable compared to dissociative adsorption. In addition, oxygen atoms in the zeolites provide active adsorption sites. In the present work, laboratory adsorption experiments were performed, treating zeolites with heat at 400°C. Surprisingly, untreated zeolites outperformed treated ones, adsorbing up to 91% of HCB, while treated zeolites reached saturation after the third run. The study attributed the better performance of untreated zeolites to the presence of interstitial water and hydrogen atoms, which are critical for electrostatic interactions with organic compounds. In general, this research provides a comprehensive analysis of the adsorption capacities of organochlorines on zeolites, combining computational simulations and laboratory experiments. This work’s distinctive quality is its methodology that combines molecular simulations, experimental verification, doping, and interstitial water effects. The findings emphasize the importance of zeolite (a high-porosity nanostructured material) structure, composition, and treatment methods in determining their effectiveness as adsorbents for environmental pollutants.\",\"PeriodicalId\":15348,\"journal\":{\"name\":\"Journal of Chemistry\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/4008315\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2024/4008315","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了某些有机氯在沸石上的吸附能力,重点是六氯苯 (HCB)、六氯十四烷 (HCTD)、六氯癸烷 (HCD)、六氯环己烷 (HCH)、七氯癸烷 (HPCD)、八氯癸烷 (OCD)、二氯二苯基三氯乙烷 (DDT) 和八氯十四烷 (OCTD)。对这些有机氯的结构进行了优化,并计算了它们的前沿分子轨道。通过对 HOMO(最高占位分子轨道)和 LUMO(最低未占位分子轨道)能量的分析,可以深入了解分子的供电子和受电子能力。本研究确定通用力场适用于调查,并用它来评估污染物在各种沸石上的吸附能力。研究发现,在 245 种沸石中,CLO(一种立方微孔五倍子磷酸盐)对六氯苯的吸附能力最高,吸附量为 65.84 wt%。就每个细胞吸附的分子数量而言,CLO 仍然是最高的,其对 HCB 的吸附量为 120 个分子/细胞,对 HCH 的吸附量为 113 个分子/细胞,对 DDT 的吸附量为 43 个分子/细胞,对 HCTD 的吸附量为 21 个分子/细胞,对 OCTD 的吸附量为 19 个分子/细胞,对 HCD 的吸附量为 47 个分子/细胞,对 HPCD 的吸附量为 30 个分子/细胞,对 OCD 的吸附量为 22 个分子/细胞。分析显示了沸石结构参数(质量、密度、HVF、APV、VSA、GSA、DPS 和 Di)与其吸附能力之间的相关性。调查深入研究了簇模型,以了解有机氯与沸石框架之间的相互作用。研究探讨了掺入不同原子(Al、Si 和 Na)的 CLO 沸石对吸附能力的影响。结果表明,铝的掺杂提高了吸附容量和吸附能,并在吸附过程中解离出氯化化合物。量子化学计算表明,与解离吸附相比,有机氯在 CLO 上的氢键结合在热力学上是有利的。此外,沸石中的氧原子提供了活性吸附位点。在本研究中,我们进行了实验室吸附实验,在 400°C 下对沸石进行加热处理。令人惊讶的是,未经处理的沸石的性能优于经过处理的沸石,可吸附高达 91% 的六氯苯,而经过处理的沸石在第三次运行后就达到了饱和状态。研究认为,未经处理的沸石性能更好,是因为存在间隙水和氢原子,这对于与有机化合物的静电相互作用至关重要。总之,这项研究结合计算模拟和实验室实验,对有机氯在沸石上的吸附能力进行了全面分析。这项工作的独特之处在于其方法论结合了分子模拟、实验验证、掺杂和间隙水效应。研究结果强调了沸石(一种高孔隙率纳米结构材料)的结构、组成和处理方法在决定其作为环境污染物吸附剂的有效性方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sorption Mechanisms and Enhancement of Selected Organochlorine Pollutants in Water on Zeolites
This study investigates the adsorption capacities of selected organochlorines on zeolites, focusing on hexachlorobenzene (HCB), hexachlorotetradecane (HCTD), hexachlorodecane (HCD), hexachlorocyclohexane (HCH), heptachlorodecane (HPCD), octachlorodecane (OCD), dichlorodiphenyltrichloroethane (DDT), and octachlorotetradecane (OCTD). The structures of the organochlorines were optimized and their Frontier molecular orbitals were calculated. The analysis of HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energies provided insights into the molecules’ electron-donating and -accepting capabilities. The present research identified the universal force field as suitable for the investigation and used it to evaluate the adsorption capacities of the pollutants on various zeolites. It was found that CLO (a cubic microporous gallophosphate) demonstrated the highest adsorption capacity for HCB among 245 zeolites, with a loading capacity of 65.84 wt%. In terms of molecules adsorbed per cell, CLO remained the highest with 120 molecules per cell for HCB, 113 molecules per cell for HCH, 43 molecules per cell for DDT, 21 molecules per cell for HCTD, 19 molecules per cell for OCTD, 47 molecules per cell for HCD, 30 molecules per cell for HPCD, and 22 molecules per cell for OCD. The analysis revealed correlations between the structural parameters of zeolites (mass, density, HVF, APV, VSA, GSA, DPS, and Di) and their adsorption capacities. The investigation delved into cluster models to understand the interaction of organochlorines with the zeolite framework. The study explored the impact of doping CLO zeolite with different atoms (Al, Si, and Na) on adsorption capacity. The results showed that doping with aluminum improved both loading capacity and adsorption energy and dissociate the chlorinated compounds during adsorption. Quantum chemical calculations show that hydrogen-based bonding of the organochlorides on the CLO is thermodynamically favorable compared to dissociative adsorption. In addition, oxygen atoms in the zeolites provide active adsorption sites. In the present work, laboratory adsorption experiments were performed, treating zeolites with heat at 400°C. Surprisingly, untreated zeolites outperformed treated ones, adsorbing up to 91% of HCB, while treated zeolites reached saturation after the third run. The study attributed the better performance of untreated zeolites to the presence of interstitial water and hydrogen atoms, which are critical for electrostatic interactions with organic compounds. In general, this research provides a comprehensive analysis of the adsorption capacities of organochlorines on zeolites, combining computational simulations and laboratory experiments. This work’s distinctive quality is its methodology that combines molecular simulations, experimental verification, doping, and interstitial water effects. The findings emphasize the importance of zeolite (a high-porosity nanostructured material) structure, composition, and treatment methods in determining their effectiveness as adsorbents for environmental pollutants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemistry
Journal of Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
5.90
自引率
3.30%
发文量
345
审稿时长
16 weeks
期刊介绍: Journal of Chemistry is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of chemistry.
期刊最新文献
A Comprehensive Review of Free Radicals, Oxidative Stress, and Antioxidants: Overview, Clinical Applications, Global Perspectives, Future Directions, and Mechanisms of Antioxidant Activity of Flavonoid Compounds Evaluation of the Potential of Daucus crinitus Extracts and Their Synthesized ZnO Nanoparticles in Inhibiting the Corrosion of Carbon Steel Synthesis and Characterization of Grewia asiatica-Stabilized Silver Nanoparticle as a Selective Probe for Al+3 in Tap, Deionized, Industrial Waste Water and Human Blood Plasma In Vitro Biological and GC-MS Analysis of Whole Plant Calotropis procera Therapeutic Potential of Withaferin-A and Propolis Combinational Drug Therapy for Breast Cancer: An In Vivo Interpretation for Validating the Antiproliferative Efficacy and Ameliorative Potential in Benzo[a]pyrene-Induced Breast Metastasis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1