{"title":"金属纳米粒子-聚合物混合物作为慢性伤口敷料的最新应用与评估","authors":"Mohammad Tahir Aminzai, Abubaker Patan","doi":"10.1155/2024/3280349","DOIUrl":null,"url":null,"abstract":"Chronic wounds, which include venous leg ulcers, diabetic foot ulcers, and pressure ulcers, are a global health issue that affects between 1% and 2% of the developed world’s population. Chronic wound healing necessitates extensive medical intervention at costly healthcare expenses. Wound care management is mainly dependent on the discovery of new and appropriate chronic wound dressing materials, and it remains a focus of research in chronic wound care. Biocompatible metallic nanoparticle-loaded wound dressing offers a novel opportunity for effectively overcoming the inherent drawbacks of traditional wound dressing materials, particularly in overcoming nonhealing chronic wounds due to their clinical complexity, for example, wound infections, chronic irritation, and trauma, persistence of foreign body or bacterial proteins, and ischemia. In this review, we will primarily focus on the advancements in nanoparticle-based antibacterial and antioxidant wound dressing materials (e.g., hydrogels, electrospun scaffolds, sponges, and films) for the treatment of chronic wounds, which overcome the limitations of traditional dressings.","PeriodicalId":16442,"journal":{"name":"Journal of Nanomaterials","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Applications and Evaluation of Metal Nanoparticle–Polymer Hybrids as Chronic Wound Dressings\",\"authors\":\"Mohammad Tahir Aminzai, Abubaker Patan\",\"doi\":\"10.1155/2024/3280349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chronic wounds, which include venous leg ulcers, diabetic foot ulcers, and pressure ulcers, are a global health issue that affects between 1% and 2% of the developed world’s population. Chronic wound healing necessitates extensive medical intervention at costly healthcare expenses. Wound care management is mainly dependent on the discovery of new and appropriate chronic wound dressing materials, and it remains a focus of research in chronic wound care. Biocompatible metallic nanoparticle-loaded wound dressing offers a novel opportunity for effectively overcoming the inherent drawbacks of traditional wound dressing materials, particularly in overcoming nonhealing chronic wounds due to their clinical complexity, for example, wound infections, chronic irritation, and trauma, persistence of foreign body or bacterial proteins, and ischemia. In this review, we will primarily focus on the advancements in nanoparticle-based antibacterial and antioxidant wound dressing materials (e.g., hydrogels, electrospun scaffolds, sponges, and films) for the treatment of chronic wounds, which overcome the limitations of traditional dressings.\",\"PeriodicalId\":16442,\"journal\":{\"name\":\"Journal of Nanomaterials\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/3280349\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2024/3280349","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Recent Applications and Evaluation of Metal Nanoparticle–Polymer Hybrids as Chronic Wound Dressings
Chronic wounds, which include venous leg ulcers, diabetic foot ulcers, and pressure ulcers, are a global health issue that affects between 1% and 2% of the developed world’s population. Chronic wound healing necessitates extensive medical intervention at costly healthcare expenses. Wound care management is mainly dependent on the discovery of new and appropriate chronic wound dressing materials, and it remains a focus of research in chronic wound care. Biocompatible metallic nanoparticle-loaded wound dressing offers a novel opportunity for effectively overcoming the inherent drawbacks of traditional wound dressing materials, particularly in overcoming nonhealing chronic wounds due to their clinical complexity, for example, wound infections, chronic irritation, and trauma, persistence of foreign body or bacterial proteins, and ischemia. In this review, we will primarily focus on the advancements in nanoparticle-based antibacterial and antioxidant wound dressing materials (e.g., hydrogels, electrospun scaffolds, sponges, and films) for the treatment of chronic wounds, which overcome the limitations of traditional dressings.
期刊介绍:
The overall aim of the Journal of Nanomaterials is to bring science and applications together on nanoscale and nanostructured materials with emphasis on synthesis, processing, characterization, and applications of materials containing true nanosize dimensions or nanostructures that enable novel/enhanced properties or functions. It is directed at both academic researchers and practicing engineers. Journal of Nanomaterials will highlight the continued growth and new challenges in nanomaterials science, engineering, and nanotechnology, both for application development and for basic research.