{"title":"基于 FTESO 自适应神经网络的多干扰下四旋翼无人机安全控制:算法与实验","authors":"Xin Cai, Xiaozhou Zhu, Wen Yao","doi":"10.1108/ir-09-2023-0196","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Quadrotors have been applied in various fields. However, because the quadrotor is subject to multiple disturbances, consisting of external disturbances, actuator faults and parameter uncertainties, it is difficult to control the unmanned aerial vehicle (UAV) to achieve high-precision tracking performance. This paper aims to design a safety controller that uses observer and neural network method to improve the tracking performance of UAV under multiple disturbances. The experiments prove that this method is effective.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>First, to actively estimate and compensate the synthetic uncertainties of the system, a finite-time extended state observer is investigated, and the disturbances are transformed into the extended state of the system for estimation. Second, an adaptive neural network controller that does not accurately require the dynamic model knowledge is designed based on the estimated value, where the weights of the neural network can be dynamically adjusted by the adaptive law. Furthermore, the finite-time bounded convergence of the proposed observer and the stability of the system are proved through homogeneous theory and Lyapunov method.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The figure-“8” climbing flight simulation and real flight experiments illustrate that the proposed safety control strategy has good tracking performance.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This paper proposes the safety control structure of the UAV, which combines the extended state observer with the neural network method. Numerical simulation results and actual flight experiments demonstrate the effectiveness of the proposed control strategy.</p><!--/ Abstract__block -->","PeriodicalId":501389,"journal":{"name":"Industrial Robot","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FTESO-adaptive neural network based safety control for a quadrotor UAV under multiple disturbances: algorithm and experiments\",\"authors\":\"Xin Cai, Xiaozhou Zhu, Wen Yao\",\"doi\":\"10.1108/ir-09-2023-0196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>Quadrotors have been applied in various fields. However, because the quadrotor is subject to multiple disturbances, consisting of external disturbances, actuator faults and parameter uncertainties, it is difficult to control the unmanned aerial vehicle (UAV) to achieve high-precision tracking performance. This paper aims to design a safety controller that uses observer and neural network method to improve the tracking performance of UAV under multiple disturbances. The experiments prove that this method is effective.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>First, to actively estimate and compensate the synthetic uncertainties of the system, a finite-time extended state observer is investigated, and the disturbances are transformed into the extended state of the system for estimation. Second, an adaptive neural network controller that does not accurately require the dynamic model knowledge is designed based on the estimated value, where the weights of the neural network can be dynamically adjusted by the adaptive law. Furthermore, the finite-time bounded convergence of the proposed observer and the stability of the system are proved through homogeneous theory and Lyapunov method.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The figure-“8” climbing flight simulation and real flight experiments illustrate that the proposed safety control strategy has good tracking performance.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>This paper proposes the safety control structure of the UAV, which combines the extended state observer with the neural network method. Numerical simulation results and actual flight experiments demonstrate the effectiveness of the proposed control strategy.</p><!--/ Abstract__block -->\",\"PeriodicalId\":501389,\"journal\":{\"name\":\"Industrial Robot\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Robot\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ir-09-2023-0196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ir-09-2023-0196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FTESO-adaptive neural network based safety control for a quadrotor UAV under multiple disturbances: algorithm and experiments
Purpose
Quadrotors have been applied in various fields. However, because the quadrotor is subject to multiple disturbances, consisting of external disturbances, actuator faults and parameter uncertainties, it is difficult to control the unmanned aerial vehicle (UAV) to achieve high-precision tracking performance. This paper aims to design a safety controller that uses observer and neural network method to improve the tracking performance of UAV under multiple disturbances. The experiments prove that this method is effective.
Design/methodology/approach
First, to actively estimate and compensate the synthetic uncertainties of the system, a finite-time extended state observer is investigated, and the disturbances are transformed into the extended state of the system for estimation. Second, an adaptive neural network controller that does not accurately require the dynamic model knowledge is designed based on the estimated value, where the weights of the neural network can be dynamically adjusted by the adaptive law. Furthermore, the finite-time bounded convergence of the proposed observer and the stability of the system are proved through homogeneous theory and Lyapunov method.
Findings
The figure-“8” climbing flight simulation and real flight experiments illustrate that the proposed safety control strategy has good tracking performance.
Originality/value
This paper proposes the safety control structure of the UAV, which combines the extended state observer with the neural network method. Numerical simulation results and actual flight experiments demonstrate the effectiveness of the proposed control strategy.