合成酚嗪类底物并将其应用于漆酶活性的高通量筛选。

IF 3.9 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied Microbiology and Biotechnology Pub Date : 2024-12-01 Epub Date: 2024-01-09 DOI:10.1007/s00253-023-12958-7
Justinas Babinskas, Jerica Sabotič, Inga Matijošytė
{"title":"合成酚嗪类底物并将其应用于漆酶活性的高通量筛选。","authors":"Justinas Babinskas, Jerica Sabotič, Inga Matijošytė","doi":"10.1007/s00253-023-12958-7","DOIUrl":null,"url":null,"abstract":"<p><p>Biocatalysis is one of the greatest tools for implementing the 12 principles of Green chemistry. Biocatalysts are bio-based, highly efficient and selective, operate at moderate conditions, and can be reused multiple times. However, the wider application of biocatalysts is plagued by a plethora of drawbacks, such as poor stability at operating conditions, inadequate efficiency of catalytic systems, a small number of commercially available biocatalysts, and a lack of substrates or methods for their discovery and development. In this work, we address the lack of suitable substrates for high-throughput screening of laccase by synthesising and investigating a newly developed phenazine-type substrate - Ferbamine. Investigation of Ferbamine pH and thermal stability indicated that its long-term stability in an aqueous medium is superior to that of commercially available substrates and does not require organic solvents. Ferbamine displayed convincing performance in detecting laccase activity on Ferbamine-agar plates in commercial laccase products and the collection of extracts from wild terrestrial fungi (42 species, 65 extracts), of which 26 species have not been described to have laccase activity prior to this work. Incubation of microorganisms on Ferbamine-agar plates showed its compatibility with live colonies. Ferbamine proved to be an easy-to-use substrate, which could be a great addition to the toolbox of methods for the functional analysis of laccases.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10776486/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synthesis and application of a phenazine class substrate for high-throughput screening of laccase activity.\",\"authors\":\"Justinas Babinskas, Jerica Sabotič, Inga Matijošytė\",\"doi\":\"10.1007/s00253-023-12958-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biocatalysis is one of the greatest tools for implementing the 12 principles of Green chemistry. Biocatalysts are bio-based, highly efficient and selective, operate at moderate conditions, and can be reused multiple times. However, the wider application of biocatalysts is plagued by a plethora of drawbacks, such as poor stability at operating conditions, inadequate efficiency of catalytic systems, a small number of commercially available biocatalysts, and a lack of substrates or methods for their discovery and development. In this work, we address the lack of suitable substrates for high-throughput screening of laccase by synthesising and investigating a newly developed phenazine-type substrate - Ferbamine. Investigation of Ferbamine pH and thermal stability indicated that its long-term stability in an aqueous medium is superior to that of commercially available substrates and does not require organic solvents. Ferbamine displayed convincing performance in detecting laccase activity on Ferbamine-agar plates in commercial laccase products and the collection of extracts from wild terrestrial fungi (42 species, 65 extracts), of which 26 species have not been described to have laccase activity prior to this work. Incubation of microorganisms on Ferbamine-agar plates showed its compatibility with live colonies. Ferbamine proved to be an easy-to-use substrate, which could be a great addition to the toolbox of methods for the functional analysis of laccases.</p>\",\"PeriodicalId\":8342,\"journal\":{\"name\":\"Applied Microbiology and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10776486/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Microbiology and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00253-023-12958-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00253-023-12958-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物催化是实现绿色化学 12 项原则的最佳工具之一。生物催化剂以生物为基础,具有高效性和选择性,可在中等条件下运行,并可多次重复使用。然而,生物催化剂的广泛应用受到诸多弊端的困扰,如工作条件稳定性差、催化系统效率不高、商业化生物催化剂数量少、缺乏底物或发现和开发方法等。在这项工作中,我们通过合成和研究一种新开发的酚嗪类底物--Ferbamine,解决了缺乏合适底物进行漆酶高通量筛选的问题。对 Ferbamine pH 值和热稳定性的研究表明,它在水介质中的长期稳定性优于市售底物,而且不需要有机溶剂。Ferbamine 在检测商用漆酶产品的 Ferbamine-琼脂平板上的漆酶活性和收集野生陆生真菌的提取物(42 种,65 种提取物)方面表现出令人信服的性能,在这项工作之前,其中 26 种真菌尚未被描述具有漆酶活性。在铁巴明琼脂平板上培养微生物表明,铁巴明与活菌落相容。事实证明,铁巴马明是一种易于使用的底物,可以为漆酶的功能分析方法工具箱增添新的内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and application of a phenazine class substrate for high-throughput screening of laccase activity.

Biocatalysis is one of the greatest tools for implementing the 12 principles of Green chemistry. Biocatalysts are bio-based, highly efficient and selective, operate at moderate conditions, and can be reused multiple times. However, the wider application of biocatalysts is plagued by a plethora of drawbacks, such as poor stability at operating conditions, inadequate efficiency of catalytic systems, a small number of commercially available biocatalysts, and a lack of substrates or methods for their discovery and development. In this work, we address the lack of suitable substrates for high-throughput screening of laccase by synthesising and investigating a newly developed phenazine-type substrate - Ferbamine. Investigation of Ferbamine pH and thermal stability indicated that its long-term stability in an aqueous medium is superior to that of commercially available substrates and does not require organic solvents. Ferbamine displayed convincing performance in detecting laccase activity on Ferbamine-agar plates in commercial laccase products and the collection of extracts from wild terrestrial fungi (42 species, 65 extracts), of which 26 species have not been described to have laccase activity prior to this work. Incubation of microorganisms on Ferbamine-agar plates showed its compatibility with live colonies. Ferbamine proved to be an easy-to-use substrate, which could be a great addition to the toolbox of methods for the functional analysis of laccases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Microbiology and Biotechnology
Applied Microbiology and Biotechnology 工程技术-生物工程与应用微生物
CiteScore
10.00
自引率
4.00%
发文量
535
审稿时长
2 months
期刊介绍: Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.
期刊最新文献
Development of fluorescence-linked immunosorbent assay for rapid detection of Staphylococcus aureus. Novel reaction systems for catalytic synthesis of structured phospholipids. Motility of Acinetobacter baumannii: regulatory systems and controlling strategies Co-metabolic degradation and metabolite detection of hexabromocyclododecane by Shewanella oneidensis MR-1 Chitosan-based matrix as a carrier for bacteriophages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1