中国亚洲柑橘木虱的遗传多样性和种群结构。

IF 2.1 3区 农林科学 Q1 ENTOMOLOGY Journal of Insect Science Pub Date : 2024-01-01 DOI:10.1093/jisesa/iead120
Aijun Huang, Jiayu Ma, Jin Yang, Bo Chen, Jun Zhou, Long Yi
{"title":"中国亚洲柑橘木虱的遗传多样性和种群结构。","authors":"Aijun Huang, Jiayu Ma, Jin Yang, Bo Chen, Jun Zhou, Long Yi","doi":"10.1093/jisesa/iead120","DOIUrl":null,"url":null,"abstract":"<p><p>The Asian citrus psyllid (ACP) is the main vector of Citrus Huanglongbing, the most damaging citrus disease, causing significant financial losses in the citrus industry. Global warming has expanded the habitat of this pest, allowing it to continue its northward migration to China. Population genetic information of ACP is fundamentally essential for species management. This study investigated the genetic diversity and population structure of Chinese ACP using the mitochondrial cytochrome oxidase subunit I gene by dataset comprised 721 sequences from 27 geographic sites in China. Low haplotype diversity (0.323 ± 0.022) and low nucleotide diversity (0.00071 ± 0.00007) were observed in the entire population, which may indicate recent founder events. Twenty-three haplotypes were identified and clustered into 2 haplogroups: haplogroup I and haplogroup II. Haplogroup II included only 2 unique haplotypes, which occurred exclusively in the Southwest China ACP population. Genetic differentiation analyses were also indicative of Southwest China population was significantly differentiated from the remaining populations. Demographic history analysis showed that ACP population in China has experienced demographic expansion. Our results provided a better understanding of the genetic distribution patterns and structures of ACP populations in China.</p>","PeriodicalId":16156,"journal":{"name":"Journal of Insect Science","volume":"24 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10776205/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genetic diversity and population structure of the Asian citrus psyllid in China.\",\"authors\":\"Aijun Huang, Jiayu Ma, Jin Yang, Bo Chen, Jun Zhou, Long Yi\",\"doi\":\"10.1093/jisesa/iead120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Asian citrus psyllid (ACP) is the main vector of Citrus Huanglongbing, the most damaging citrus disease, causing significant financial losses in the citrus industry. Global warming has expanded the habitat of this pest, allowing it to continue its northward migration to China. Population genetic information of ACP is fundamentally essential for species management. This study investigated the genetic diversity and population structure of Chinese ACP using the mitochondrial cytochrome oxidase subunit I gene by dataset comprised 721 sequences from 27 geographic sites in China. Low haplotype diversity (0.323 ± 0.022) and low nucleotide diversity (0.00071 ± 0.00007) were observed in the entire population, which may indicate recent founder events. Twenty-three haplotypes were identified and clustered into 2 haplogroups: haplogroup I and haplogroup II. Haplogroup II included only 2 unique haplotypes, which occurred exclusively in the Southwest China ACP population. Genetic differentiation analyses were also indicative of Southwest China population was significantly differentiated from the remaining populations. Demographic history analysis showed that ACP population in China has experienced demographic expansion. Our results provided a better understanding of the genetic distribution patterns and structures of ACP populations in China.</p>\",\"PeriodicalId\":16156,\"journal\":{\"name\":\"Journal of Insect Science\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10776205/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/jisesa/iead120\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jisesa/iead120","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

亚洲柑橘象鼻虫(ACP)是柑橘黄龙病的主要传播媒介,黄龙病是危害最大的柑橘病害,给柑橘产业造成了巨大的经济损失。全球变暖扩大了这种害虫的栖息地,使其得以继续向北迁移到中国。ACP 的种群遗传信息对于物种管理至关重要。本研究利用线粒体细胞色素氧化酶亚单位 I 基因研究了中国 ACP 的遗传多样性和种群结构,数据集包括来自中国 27 个地理位点的 721 个序列。在整个种群中观察到较低的单倍型多样性(0.323 ± 0.022)和较低的核苷酸多样性(0.00071 ± 0.00007),这可能表明最近发生了创始事件。共鉴定出 23 个单倍型,并将其分为 2 个单倍群,即单倍群 I 和单倍群 II。单倍群 II 仅包括 2 个独特的单倍型,这些单倍型仅出现在中国西南 ACP 群体中。遗传分化分析也表明,中国西南人群与其他人群有显著分化。人口历史分析表明,中国的 ACP 群体经历了人口扩张。我们的研究结果有助于更好地了解中国 ACP 种群的遗传分布模式和结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetic diversity and population structure of the Asian citrus psyllid in China.

The Asian citrus psyllid (ACP) is the main vector of Citrus Huanglongbing, the most damaging citrus disease, causing significant financial losses in the citrus industry. Global warming has expanded the habitat of this pest, allowing it to continue its northward migration to China. Population genetic information of ACP is fundamentally essential for species management. This study investigated the genetic diversity and population structure of Chinese ACP using the mitochondrial cytochrome oxidase subunit I gene by dataset comprised 721 sequences from 27 geographic sites in China. Low haplotype diversity (0.323 ± 0.022) and low nucleotide diversity (0.00071 ± 0.00007) were observed in the entire population, which may indicate recent founder events. Twenty-three haplotypes were identified and clustered into 2 haplogroups: haplogroup I and haplogroup II. Haplogroup II included only 2 unique haplotypes, which occurred exclusively in the Southwest China ACP population. Genetic differentiation analyses were also indicative of Southwest China population was significantly differentiated from the remaining populations. Demographic history analysis showed that ACP population in China has experienced demographic expansion. Our results provided a better understanding of the genetic distribution patterns and structures of ACP populations in China.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Insect Science
Journal of Insect Science 生物-昆虫学
CiteScore
3.70
自引率
0.00%
发文量
80
审稿时长
7.5 months
期刊介绍: The Journal of Insect Science was founded with support from the University of Arizona library in 2001 by Dr. Henry Hagedorn, who served as editor-in-chief until his death in January 2014. The Entomological Society of America was very pleased to add the Journal of Insect Science to its publishing portfolio in 2014. The fully open access journal publishes papers in all aspects of the biology of insects and other arthropods from the molecular to the ecological, and their agricultural and medical impact.
期刊最新文献
Bee cups 2.0: P-cups as single-use cages for honey bee (Hymenoptera: Apidae) experiments. Direct and indirect effects of selective insecticides on 2 generalist predators of Bemisia tabaci (Hemiptera: Aleyrodidae). Low-density migratory beekeeping induces intermediate disturbance effects on native bee communities in Tibetan Plateau alpine meadows. Population records reveal expanded habitat preference for the endemic, predaceous Jamaican fungus gnat Neoditomyia farri (Diptera, Keroplatidae). Cellulose degradation in Glenea cantor (Fabricius) (Coleoptera: Cerambycidae): functional characterization of GcEGaseZ7 and Cellulase reveals a novel enzymatic activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1