S-二氢鱼藤素和 3-(1,3-苯并恶唑-2-基)-苯甲酰胺,两种具有抗脂肪生成活性的新潜在 β-雌激素受体配体。

IF 1.9 4区 医学 Q3 CHEMISTRY, MEDICINAL Medicinal Chemistry Pub Date : 2024-01-01 DOI:10.2174/0115734064285786231230185457
María F Torres-Rojas, Gilberto Mandujano-Lazaro, Cesar Lopez-Camarillo, Esther Ramirez-Moreno, Domingo Mendez-Alvarez, Gildardo Rivera, Laurence A Marchat
{"title":"S-二氢鱼藤素和 3-(1,3-苯并恶唑-2-基)-苯甲酰胺,两种具有抗脂肪生成活性的新潜在 β-雌激素受体配体。","authors":"María F Torres-Rojas, Gilberto Mandujano-Lazaro, Cesar Lopez-Camarillo, Esther Ramirez-Moreno, Domingo Mendez-Alvarez, Gildardo Rivera, Laurence A Marchat","doi":"10.2174/0115734064285786231230185457","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The elucidation of molecular pathways associated with adipogenesis has evidenced the relevance of estrogen and estrogen receptor beta (ERβ). The positive effects of ERβ ligands on adipogenesis, energy expenditure, lipolysis, food intake, and weight loss, make ERβ an attractive target for obesity control. From ligand-based virtual screening, molecular docking, and molecular dynamic simulations, six new likely ERβ ligands (C1 to C6) have been reported with potential for pharmacological obesity treatment.</p><p><strong>Objective: </strong>In this study, the effect of molecules C1-C6 on adipogenesis using the murine 3T3-L1 cell line was evaluated.</p><p><strong>Methods: </strong>Cell viability was assessed by MTT assays. Lipid accumulation and gene expression were investigated by ORO staining and real-time quantitative RT-PCR experiments, respectively.</p><p><strong>Results: </strong>Cell viability was not significantly affected by C1-C6 at concentrations up to 10 μM. Interestingly, treatment with 10 μM of C1 (S-Dihydrodaidzein) and C2 (3-(1,3-benzoxazol-2-yl)- benzamide) for 72 h inhibited adipocyte differentiation; moreover, ORO staining evidenced a reduced intracellular lipid accumulation (40% at day 7). Consistently, mRNA expression of the adipogenic markers, PPARγ and C/EBPα, was reduced by 50% and 82%, respectively, in the case of C1, and by 83% and 59%, in the case of C2.</p><p><strong>Conclusion: </strong>Altogether, these results show the two new potential β-estrogen receptor ligands, C1 and C2, to exhibit anti-adipogenic activity. They could further be used as lead structures for the development of more efficient drugs for obesity control.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":"434-442"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"S-Dihydrodaidzein and 3-(1,3-benzoxazol-2-yl)-benzamide, Two New Potential β-estrogen Receptor Ligands with Anti-adipogenic Activity.\",\"authors\":\"María F Torres-Rojas, Gilberto Mandujano-Lazaro, Cesar Lopez-Camarillo, Esther Ramirez-Moreno, Domingo Mendez-Alvarez, Gildardo Rivera, Laurence A Marchat\",\"doi\":\"10.2174/0115734064285786231230185457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The elucidation of molecular pathways associated with adipogenesis has evidenced the relevance of estrogen and estrogen receptor beta (ERβ). The positive effects of ERβ ligands on adipogenesis, energy expenditure, lipolysis, food intake, and weight loss, make ERβ an attractive target for obesity control. From ligand-based virtual screening, molecular docking, and molecular dynamic simulations, six new likely ERβ ligands (C1 to C6) have been reported with potential for pharmacological obesity treatment.</p><p><strong>Objective: </strong>In this study, the effect of molecules C1-C6 on adipogenesis using the murine 3T3-L1 cell line was evaluated.</p><p><strong>Methods: </strong>Cell viability was assessed by MTT assays. Lipid accumulation and gene expression were investigated by ORO staining and real-time quantitative RT-PCR experiments, respectively.</p><p><strong>Results: </strong>Cell viability was not significantly affected by C1-C6 at concentrations up to 10 μM. Interestingly, treatment with 10 μM of C1 (S-Dihydrodaidzein) and C2 (3-(1,3-benzoxazol-2-yl)- benzamide) for 72 h inhibited adipocyte differentiation; moreover, ORO staining evidenced a reduced intracellular lipid accumulation (40% at day 7). Consistently, mRNA expression of the adipogenic markers, PPARγ and C/EBPα, was reduced by 50% and 82%, respectively, in the case of C1, and by 83% and 59%, in the case of C2.</p><p><strong>Conclusion: </strong>Altogether, these results show the two new potential β-estrogen receptor ligands, C1 and C2, to exhibit anti-adipogenic activity. They could further be used as lead structures for the development of more efficient drugs for obesity control.</p>\",\"PeriodicalId\":18382,\"journal\":{\"name\":\"Medicinal Chemistry\",\"volume\":\" \",\"pages\":\"434-442\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734064285786231230185457\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734064285786231230185457","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:与脂肪生成相关的分子途径的阐明证明了雌激素和雌激素受体β(ERβ)的相关性。ERβ配体对脂肪生成、能量消耗、脂肪分解、食物摄入和体重减轻的积极作用,使ERβ成为控制肥胖的一个有吸引力的靶点。通过配体虚拟筛选、分子对接和分子动力学模拟,研究人员发现了六种新的可能的ERβ配体(C1至C6),这些配体具有药物治疗肥胖症的潜力:本研究利用小鼠 3T3-L1 细胞系评估了 C1-C6 分子对脂肪生成的影响:方法:通过 MTT 试验评估细胞活力。方法:通过 MTT 试验评估细胞活力,通过 ORO 染色和实时定量 RT-PCR 实验分别检测脂质积累和基因表达:结果:浓度不超过 10 μM 的 C1-C6 对细胞活力没有明显影响。有趣的是,用 10 μM 的 C1(S-二氢蝙蝠葛素)和 C2(3-(1,3-苯并恶唑-2-基)-苯甲酰胺)处理 72 小时可抑制脂肪细胞分化;此外,ORO 染色显示细胞内脂质积累减少(第 7 天减少 40%)。同样,成脂标志物 PPARγ 和 C/EBPα 的 mRNA 表达在 C1 中分别减少了 50%和 82%,在 C2 中分别减少了 83%和 59%:总之,这些结果表明 C1 和 C2 这两种新的潜在 β-雌激素受体配体具有抗脂肪生成活性。这些结果表明,C1 和 C2 这两种新的潜在 β-雌激素受体配体具有抗脂肪生成活性,可进一步作为先导结构用于开发更有效的肥胖控制药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
S-Dihydrodaidzein and 3-(1,3-benzoxazol-2-yl)-benzamide, Two New Potential β-estrogen Receptor Ligands with Anti-adipogenic Activity.

Background: The elucidation of molecular pathways associated with adipogenesis has evidenced the relevance of estrogen and estrogen receptor beta (ERβ). The positive effects of ERβ ligands on adipogenesis, energy expenditure, lipolysis, food intake, and weight loss, make ERβ an attractive target for obesity control. From ligand-based virtual screening, molecular docking, and molecular dynamic simulations, six new likely ERβ ligands (C1 to C6) have been reported with potential for pharmacological obesity treatment.

Objective: In this study, the effect of molecules C1-C6 on adipogenesis using the murine 3T3-L1 cell line was evaluated.

Methods: Cell viability was assessed by MTT assays. Lipid accumulation and gene expression were investigated by ORO staining and real-time quantitative RT-PCR experiments, respectively.

Results: Cell viability was not significantly affected by C1-C6 at concentrations up to 10 μM. Interestingly, treatment with 10 μM of C1 (S-Dihydrodaidzein) and C2 (3-(1,3-benzoxazol-2-yl)- benzamide) for 72 h inhibited adipocyte differentiation; moreover, ORO staining evidenced a reduced intracellular lipid accumulation (40% at day 7). Consistently, mRNA expression of the adipogenic markers, PPARγ and C/EBPα, was reduced by 50% and 82%, respectively, in the case of C1, and by 83% and 59%, in the case of C2.

Conclusion: Altogether, these results show the two new potential β-estrogen receptor ligands, C1 and C2, to exhibit anti-adipogenic activity. They could further be used as lead structures for the development of more efficient drugs for obesity control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medicinal Chemistry
Medicinal Chemistry 医学-医药化学
CiteScore
4.30
自引率
4.30%
发文量
109
审稿时长
12 months
期刊介绍: Aims & Scope Medicinal Chemistry a peer-reviewed journal, aims to cover all the latest outstanding developments in medicinal chemistry and rational drug design. The journal publishes original research, mini-review articles and guest edited thematic issues covering recent research and developments in the field. Articles are published rapidly by taking full advantage of Internet technology for both the submission and peer review of manuscripts. Medicinal Chemistry is an essential journal for all involved in drug design and discovery.
期刊最新文献
In Silico Studies of Phytoconstituents to Identify Potential Inhibitors for ERα Protein of Breast Cancer A Preclinical Study on 4-Methyl-N-((4-(trifluoromethoxy)phenyl) carbamoyl)-benzenesulfonamide as a Potent Chemotherapeutic Agent against Liver and Pancreatic Carcinogenesis in Rats: Immunohistochemical and Histopathological Studies Exploring the Diverse Therapeutic Applications of 1, 3-Thiazine: A Comprehensive Review Unveiling the Anti-cancer Potential of Oxadiazole Derivatives: A Comprehensive Exploration of Structure-Activity Relationships and Chemico-Biological Insights Recent Advances in Anticancer Research of Osmium and Rhodium Complexes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1