Laura Dessard, Guillaume Gersdorff, Nicola Ivanovik, Masoud Zoca-Assadi, Peter Nopp, Séverine Camby, Philippe P Lefebvre
{"title":"人工耳蜗:使用基于表格的软件 OTOPLAN® 分析频率到位置的不匹配及其对听力表现的影响。","authors":"Laura Dessard, Guillaume Gersdorff, Nicola Ivanovik, Masoud Zoca-Assadi, Peter Nopp, Séverine Camby, Philippe P Lefebvre","doi":"10.1159/000535693","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The purpose of this study was to compare the originally applied frequency allocation of cochlear implant electrodes assigned by default at the time of activation with a more recent frequency allocation that is anatomy-based by a software called OTOPLAN®. Based on a computed tomography scan of the temporal bone, this software calculates the position of each electrode in the cochlea and its corresponding tonotopic frequency. We also evaluated whether patients with a significant mismatch between these two allocations present poorer speech intelligibility.</p><p><strong>Materials and methods: </strong>Patients who underwent cochlear implantation from 2016 to 2021 at the University Hospital of Liege were included in this retrospective study. We used OTOPLAN® to calculate the tonotopic frequency allocation of each electrode according to its exact position in the cochlear duct. This anatomical frequency mapping was compared with the default frequency mapping at the time of cochlear implant activation. Finally, we compared the mismatch with the patients' auditory performance, represented by the Auditory Capacity Index (ACI).</p><p><strong>Results: </strong>Thirteen patients were included in the study. All patients had a mismatch between the two frequency maps, to a variable extent (200 Hz-1,100 Hz). Frequency shift was significantly inversely correlated with ACI and with the time needed to improve speech intelligibility.</p><p><strong>Conclusion: </strong>Our primary results show that patients with a larger mismatch between default frequency mapping and anatomically assigned frequency mapping experience poorer hearing performance and slower adaptation to a cochlear implant.</p>","PeriodicalId":55432,"journal":{"name":"Audiology and Neuro-Otology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cochlear Implant: Analysis of the Frequency-to-Place Mismatch with the Table-Based Software OTOPLAN® and Its Influence on Hearing Performance.\",\"authors\":\"Laura Dessard, Guillaume Gersdorff, Nicola Ivanovik, Masoud Zoca-Assadi, Peter Nopp, Séverine Camby, Philippe P Lefebvre\",\"doi\":\"10.1159/000535693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The purpose of this study was to compare the originally applied frequency allocation of cochlear implant electrodes assigned by default at the time of activation with a more recent frequency allocation that is anatomy-based by a software called OTOPLAN®. Based on a computed tomography scan of the temporal bone, this software calculates the position of each electrode in the cochlea and its corresponding tonotopic frequency. We also evaluated whether patients with a significant mismatch between these two allocations present poorer speech intelligibility.</p><p><strong>Materials and methods: </strong>Patients who underwent cochlear implantation from 2016 to 2021 at the University Hospital of Liege were included in this retrospective study. We used OTOPLAN® to calculate the tonotopic frequency allocation of each electrode according to its exact position in the cochlear duct. This anatomical frequency mapping was compared with the default frequency mapping at the time of cochlear implant activation. Finally, we compared the mismatch with the patients' auditory performance, represented by the Auditory Capacity Index (ACI).</p><p><strong>Results: </strong>Thirteen patients were included in the study. All patients had a mismatch between the two frequency maps, to a variable extent (200 Hz-1,100 Hz). Frequency shift was significantly inversely correlated with ACI and with the time needed to improve speech intelligibility.</p><p><strong>Conclusion: </strong>Our primary results show that patients with a larger mismatch between default frequency mapping and anatomically assigned frequency mapping experience poorer hearing performance and slower adaptation to a cochlear implant.</p>\",\"PeriodicalId\":55432,\"journal\":{\"name\":\"Audiology and Neuro-Otology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Audiology and Neuro-Otology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000535693\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Audiology and Neuro-Otology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000535693","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
Cochlear Implant: Analysis of the Frequency-to-Place Mismatch with the Table-Based Software OTOPLAN® and Its Influence on Hearing Performance.
Objective: The purpose of this study was to compare the originally applied frequency allocation of cochlear implant electrodes assigned by default at the time of activation with a more recent frequency allocation that is anatomy-based by a software called OTOPLAN®. Based on a computed tomography scan of the temporal bone, this software calculates the position of each electrode in the cochlea and its corresponding tonotopic frequency. We also evaluated whether patients with a significant mismatch between these two allocations present poorer speech intelligibility.
Materials and methods: Patients who underwent cochlear implantation from 2016 to 2021 at the University Hospital of Liege were included in this retrospective study. We used OTOPLAN® to calculate the tonotopic frequency allocation of each electrode according to its exact position in the cochlear duct. This anatomical frequency mapping was compared with the default frequency mapping at the time of cochlear implant activation. Finally, we compared the mismatch with the patients' auditory performance, represented by the Auditory Capacity Index (ACI).
Results: Thirteen patients were included in the study. All patients had a mismatch between the two frequency maps, to a variable extent (200 Hz-1,100 Hz). Frequency shift was significantly inversely correlated with ACI and with the time needed to improve speech intelligibility.
Conclusion: Our primary results show that patients with a larger mismatch between default frequency mapping and anatomically assigned frequency mapping experience poorer hearing performance and slower adaptation to a cochlear implant.
期刊介绍:
''Audiology and Neurotology'' provides a forum for the publication of the most-advanced and rigorous scientific research related to the basic science and clinical aspects of the auditory and vestibular system and diseases of the ear. This journal seeks submission of cutting edge research opening up new and innovative fields of study that may improve our understanding and treatment of patients with disorders of the auditory and vestibular systems, their central connections and their perception in the central nervous system. In addition to original papers the journal also offers invited review articles on current topics written by leading experts in the field. The journal is of primary importance for all scientists and practitioners interested in audiology, otology and neurotology, auditory neurosciences and related disciplines.