MiR-214-3p过表达触发的软骨素聚合因子(CHPF)抑制可调节结肠癌的铁变态反应和新陈代谢。

The Kaohsiung journal of medical sciences Pub Date : 2024-03-01 Epub Date: 2024-01-08 DOI:10.1002/kjm2.12802
Zhi-Yuan Yun, Di Wu, Xin Wang, Peng Huang, Na Li
{"title":"MiR-214-3p过表达触发的软骨素聚合因子(CHPF)抑制可调节结肠癌的铁变态反应和新陈代谢。","authors":"Zhi-Yuan Yun, Di Wu, Xin Wang, Peng Huang, Na Li","doi":"10.1002/kjm2.12802","DOIUrl":null,"url":null,"abstract":"<p><p>Colon cancer is a common cancer with high mortality globally. The role of chondroitin polymerizing factor (CHPF) has been elucidated in various cancers. However, its role and mechanism remain unknown in colon cancer. CHPF expression was examined by GEPIA database, reverse transcription-quantitative polymerase chain reaction and western blot. The relationship between CHPF expression and the clinicopathologic characteristics as well as miR-214-3p level was determined in colon cancer patients. The role and mechanism of CHPF in the growth, ferroptosis, and glycolysis of colon cancer cells were evaluated by cell counting kit-8, biochemical detections, luciferase, and western blot experiments. Additionally, the role of CHPF was explored in xenografted mice. CHPF expression was increased and was related to advanced TNM stage, poor differentiation and shorter overall survival in patients with colon cancer. Knockdown of CHPF inhibited colon cancer cell growth, and downregulated the expression of proteins involving in ferroptosis and glycolysis both in vitro and in vivo. Besides, CHPF silencing increased the levels of ferrous iron and ROS, but decreased glucose uptake, lactate product, and ATP level in vitro. Mechanically, miR-214-3p directly targeted CHPF and negatively regulated its expression. Upregulation of miR-214-3p reduced cell viability, glucose uptake, lactate product, and ATP level, but increased the levels of ferrous iron and ROS, which were reversed by the overexpression of CHPF. Upregulation of CHPF predicted poor prognosis, and miR-214-3p/CHPF axis inhibited growth, downregulated the levels of glycolysis-related indexes, and promoted ferroptosis in colon cancer cells.</p>","PeriodicalId":94244,"journal":{"name":"The Kaohsiung journal of medical sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MiR-214-3p overexpression-triggered chondroitin polymerizing factor (CHPF) inhibition modulates the ferroptosis and metabolism in colon cancer.\",\"authors\":\"Zhi-Yuan Yun, Di Wu, Xin Wang, Peng Huang, Na Li\",\"doi\":\"10.1002/kjm2.12802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colon cancer is a common cancer with high mortality globally. The role of chondroitin polymerizing factor (CHPF) has been elucidated in various cancers. However, its role and mechanism remain unknown in colon cancer. CHPF expression was examined by GEPIA database, reverse transcription-quantitative polymerase chain reaction and western blot. The relationship between CHPF expression and the clinicopathologic characteristics as well as miR-214-3p level was determined in colon cancer patients. The role and mechanism of CHPF in the growth, ferroptosis, and glycolysis of colon cancer cells were evaluated by cell counting kit-8, biochemical detections, luciferase, and western blot experiments. Additionally, the role of CHPF was explored in xenografted mice. CHPF expression was increased and was related to advanced TNM stage, poor differentiation and shorter overall survival in patients with colon cancer. Knockdown of CHPF inhibited colon cancer cell growth, and downregulated the expression of proteins involving in ferroptosis and glycolysis both in vitro and in vivo. Besides, CHPF silencing increased the levels of ferrous iron and ROS, but decreased glucose uptake, lactate product, and ATP level in vitro. Mechanically, miR-214-3p directly targeted CHPF and negatively regulated its expression. Upregulation of miR-214-3p reduced cell viability, glucose uptake, lactate product, and ATP level, but increased the levels of ferrous iron and ROS, which were reversed by the overexpression of CHPF. Upregulation of CHPF predicted poor prognosis, and miR-214-3p/CHPF axis inhibited growth, downregulated the levels of glycolysis-related indexes, and promoted ferroptosis in colon cancer cells.</p>\",\"PeriodicalId\":94244,\"journal\":{\"name\":\"The Kaohsiung journal of medical sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Kaohsiung journal of medical sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/kjm2.12802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kaohsiung journal of medical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/kjm2.12802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结肠癌是全球死亡率较高的常见癌症。软骨素聚合因子(CHPF)在多种癌症中的作用已被阐明。然而,它在结肠癌中的作用和机制仍然未知。研究人员通过 GEPIA 数据库、反转录定量聚合酶链反应和 Western 印迹检测了 CHPF 的表达。研究还确定了结肠癌患者中 CHPF 表达与临床病理特征以及 miR-214-3p 水平之间的关系。通过细胞计数试剂盒-8、生化检测、荧光素酶和 Western 印迹实验,评估了 CHPF 在结肠癌细胞生长、铁突变和糖酵解中的作用和机制。此外,还在异种移植小鼠体内探讨了 CHPF 的作用。在结肠癌患者中,CHPF表达增加,与TNM分期晚期、分化不良和总生存期缩短有关。敲除 CHPF 可抑制结肠癌细胞的生长,并在体外和体内下调参与铁变态反应和糖酵解的蛋白质的表达。此外,沉默 CHPF 会增加亚铁和 ROS 水平,但会降低体外葡萄糖摄取、乳酸产物和 ATP 水平。在机制上,miR-214-3p 直接靶向 CHPF 并负向调节其表达。miR-214-3p 的上调降低了细胞活力、葡萄糖摄取量、乳酸产物和 ATP 水平,但增加了亚铁和 ROS 水平,而 CHPF 的过表达则逆转了这一趋势。CHPF 的上调预示着不良预后,miR-214-3p/CHPF 轴抑制了结肠癌细胞的生长,下调了糖酵解相关指标的水平,并促进了铁变态反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MiR-214-3p overexpression-triggered chondroitin polymerizing factor (CHPF) inhibition modulates the ferroptosis and metabolism in colon cancer.

Colon cancer is a common cancer with high mortality globally. The role of chondroitin polymerizing factor (CHPF) has been elucidated in various cancers. However, its role and mechanism remain unknown in colon cancer. CHPF expression was examined by GEPIA database, reverse transcription-quantitative polymerase chain reaction and western blot. The relationship between CHPF expression and the clinicopathologic characteristics as well as miR-214-3p level was determined in colon cancer patients. The role and mechanism of CHPF in the growth, ferroptosis, and glycolysis of colon cancer cells were evaluated by cell counting kit-8, biochemical detections, luciferase, and western blot experiments. Additionally, the role of CHPF was explored in xenografted mice. CHPF expression was increased and was related to advanced TNM stage, poor differentiation and shorter overall survival in patients with colon cancer. Knockdown of CHPF inhibited colon cancer cell growth, and downregulated the expression of proteins involving in ferroptosis and glycolysis both in vitro and in vivo. Besides, CHPF silencing increased the levels of ferrous iron and ROS, but decreased glucose uptake, lactate product, and ATP level in vitro. Mechanically, miR-214-3p directly targeted CHPF and negatively regulated its expression. Upregulation of miR-214-3p reduced cell viability, glucose uptake, lactate product, and ATP level, but increased the levels of ferrous iron and ROS, which were reversed by the overexpression of CHPF. Upregulation of CHPF predicted poor prognosis, and miR-214-3p/CHPF axis inhibited growth, downregulated the levels of glycolysis-related indexes, and promoted ferroptosis in colon cancer cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Models incorporating physical, laboratory and gut metabolite markers can be used to predict severe hepatic steatosis in MAFLD patients. IGF2BP3-dependent N6-methyladenosine modification of USP49 promotes carboplatin resistance in retinoblastoma by enhancing autophagy via regulating the stabilization of SIRT1. Prediction model of in-hospital cardiac arrest using machine learning in the early phase of hospitalization. Higher skin sympathetic nerve activity as a potential predictor of overactive bladder in females refractory to oral monotherapy. Long non-coding RNA MALAT1 triggers ferroptosis via interaction with FUS to enhance ACSF2 mRNA stabilization in septic acute kidney injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1