利用分数阶强化学习对不确定非线性多输入多输出系统进行分数阶模糊滑模控制

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Complex & Intelligent Systems Pub Date : 2024-01-10 DOI:10.1007/s40747-023-01309-8
Tarek A. Mahmoud, Mohammad El-Hossainy, Belal Abo-Zalam, Raafat Shalaby
{"title":"利用分数阶强化学习对不确定非线性多输入多输出系统进行分数阶模糊滑模控制","authors":"Tarek A. Mahmoud, Mohammad El-Hossainy, Belal Abo-Zalam, Raafat Shalaby","doi":"10.1007/s40747-023-01309-8","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a novel approach aimed at enhancing the control performance of a specific class of unknown multiple-input and multiple-output nonlinear systems. The proposed method involves the utilization of a fractional-order fuzzy sliding mode controller, which is implemented through online fractional-order reinforcement learning (FOFSMC-FRL). First, the proposed approach leverages two Takagi–Sugeno–Kang (TSK) fuzzy neural network actors. These actors approximate both the equivalent and switch control parts of the sliding mode control. Additionally, a critic TSK fuzzy neural network is employed to approximate the value function of the reinforcement learning process. Second, the FOFSMC-FRL parameters undergo online adaptation using an innovative fractional-order Levenberg–Marquardt learning method. This adaptive mechanism allows the controller to continuously update its parameters based on the system’s behavior, optimizing its control strategy accordingly. Third, the stability and convergence of the proposed approach are rigorously examined using Lyapunov theorem. Notably, the proposed structure offers several key advantages as it does not depend on knowledge of the system dynamics, uncertainty bounds, or disturbance characteristics. Moreover, the chattering phenomenon, often associated with sliding mode control, is effectively eliminated without compromising the system’s robustness. Finally, a comparative simulation study is conducted to demonstrate the feasibility and superiority of the proposed method over other control methods. Through this comparison, the effectiveness and performance advantages of the approach are validated.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"63 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional-order fuzzy sliding mode control of uncertain nonlinear MIMO systems using fractional-order reinforcement learning\",\"authors\":\"Tarek A. Mahmoud, Mohammad El-Hossainy, Belal Abo-Zalam, Raafat Shalaby\",\"doi\":\"10.1007/s40747-023-01309-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces a novel approach aimed at enhancing the control performance of a specific class of unknown multiple-input and multiple-output nonlinear systems. The proposed method involves the utilization of a fractional-order fuzzy sliding mode controller, which is implemented through online fractional-order reinforcement learning (FOFSMC-FRL). First, the proposed approach leverages two Takagi–Sugeno–Kang (TSK) fuzzy neural network actors. These actors approximate both the equivalent and switch control parts of the sliding mode control. Additionally, a critic TSK fuzzy neural network is employed to approximate the value function of the reinforcement learning process. Second, the FOFSMC-FRL parameters undergo online adaptation using an innovative fractional-order Levenberg–Marquardt learning method. This adaptive mechanism allows the controller to continuously update its parameters based on the system’s behavior, optimizing its control strategy accordingly. Third, the stability and convergence of the proposed approach are rigorously examined using Lyapunov theorem. Notably, the proposed structure offers several key advantages as it does not depend on knowledge of the system dynamics, uncertainty bounds, or disturbance characteristics. Moreover, the chattering phenomenon, often associated with sliding mode control, is effectively eliminated without compromising the system’s robustness. Finally, a comparative simulation study is conducted to demonstrate the feasibility and superiority of the proposed method over other control methods. Through this comparison, the effectiveness and performance advantages of the approach are validated.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-023-01309-8\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-023-01309-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新方法,旨在提高特定类别的未知多输入多输出非线性系统的控制性能。所提出的方法涉及利用分数阶模糊滑模控制器,该控制器是通过在线分数阶强化学习(FOFSMC-FRL)实现的。首先,建议的方法利用了两个高木-菅野-康(TSK)模糊神经网络角色。这些角色近似于滑模控制的等效控制和开关控制部分。此外,还采用了一个批判的 TSK 模糊神经网络来近似强化学习过程的值函数。其次,FOFSMC-FRL 参数采用创新的分数阶 Levenberg-Marquardt 学习方法进行在线自适应。这种自适应机制允许控制器根据系统行为不断更新其参数,并相应地优化其控制策略。第三,利用 Lyapunov 定理严格检验了所提方法的稳定性和收敛性。值得注意的是,所提出的结构具有几个关键优势,因为它不依赖于系统动力学知识、不确定性边界或干扰特性。此外,在不影响系统鲁棒性的前提下,有效消除了滑模控制中经常出现的颤振现象。最后,我们进行了一项比较仿真研究,以证明所提方法的可行性以及与其他控制方法相比的优越性。通过比较,验证了该方法的有效性和性能优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fractional-order fuzzy sliding mode control of uncertain nonlinear MIMO systems using fractional-order reinforcement learning

This paper introduces a novel approach aimed at enhancing the control performance of a specific class of unknown multiple-input and multiple-output nonlinear systems. The proposed method involves the utilization of a fractional-order fuzzy sliding mode controller, which is implemented through online fractional-order reinforcement learning (FOFSMC-FRL). First, the proposed approach leverages two Takagi–Sugeno–Kang (TSK) fuzzy neural network actors. These actors approximate both the equivalent and switch control parts of the sliding mode control. Additionally, a critic TSK fuzzy neural network is employed to approximate the value function of the reinforcement learning process. Second, the FOFSMC-FRL parameters undergo online adaptation using an innovative fractional-order Levenberg–Marquardt learning method. This adaptive mechanism allows the controller to continuously update its parameters based on the system’s behavior, optimizing its control strategy accordingly. Third, the stability and convergence of the proposed approach are rigorously examined using Lyapunov theorem. Notably, the proposed structure offers several key advantages as it does not depend on knowledge of the system dynamics, uncertainty bounds, or disturbance characteristics. Moreover, the chattering phenomenon, often associated with sliding mode control, is effectively eliminated without compromising the system’s robustness. Finally, a comparative simulation study is conducted to demonstrate the feasibility and superiority of the proposed method over other control methods. Through this comparison, the effectiveness and performance advantages of the approach are validated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
期刊最新文献
Large-scale multiobjective competitive swarm optimizer algorithm based on regional multidirectional search Towards fairness-aware multi-objective optimization Low-frequency spectral graph convolution networks with one-hop connections information for personalized tag recommendation A decentralized feedback-based consensus model considering the consistency maintenance and readability of probabilistic linguistic preference relations for large-scale group decision-making A dynamic preference recommendation model based on spatiotemporal knowledge graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1