{"title":"嵌入二氧化硅层的热氮离子植入硅量子点的光致发光增强效应","authors":"Tomohisa Mizuno, Koki Murakawa","doi":"10.1063/5.0179699","DOIUrl":null,"url":null,"abstract":"Using the novel process of hot N+-ion implantation at 800 °C into Si quantum dots (Si-QDs) with approximately 3.2 nm fabricated by hot Si+-ion implantation into an SiO2 layer and post-Ar annealing, we experimentally demonstrated that the photoluminescence intensity (IPL) of the Si-QDs increased with increasing N+-ion dose (DN+). Post-N2 high-temperature annealing without hot N+-ion implantation, as a reference process, also increased the IPL of Si-QDs, because N atoms trapped within Si-QDs, which was evaluated by secondary ion mass spectrometry, terminate the dangling bonds within Si-QDs and at the Si/SiO2 interface. Additionally, the IPL of Si-QDs showed the maximum value at the optimal DN+ of 5 × 1015 cm−2, which was 1.4-fold higher than that observed without hot N+-ion implantation. With a short post-annealing time (<60 min), the increase in IPL owing to N+-ion implantation was considerably larger than that caused by N2 annealing, which is likely due to the efficiency of the termination of the dangling bonds of the Si-QDs by the N+-ions. This is an advantage of the hot N+-ion implantation technique. Forming gas annealing after furnace annealing also induced a larger IPL than that observed before forming gas annealing. However, the maximum IPL observed after forming gas annealing was completely independent of the conditions of furnace annealing and DN+. This suggests that the perfect termination of the dangling bonds of the Si-QDs may be realized via forming gas annealing after furnace annealing.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"2 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoluminescence enhancement from hot nitrogen-ion implanted Si quantum dots embedded within SiO2 layer\",\"authors\":\"Tomohisa Mizuno, Koki Murakawa\",\"doi\":\"10.1063/5.0179699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the novel process of hot N+-ion implantation at 800 °C into Si quantum dots (Si-QDs) with approximately 3.2 nm fabricated by hot Si+-ion implantation into an SiO2 layer and post-Ar annealing, we experimentally demonstrated that the photoluminescence intensity (IPL) of the Si-QDs increased with increasing N+-ion dose (DN+). Post-N2 high-temperature annealing without hot N+-ion implantation, as a reference process, also increased the IPL of Si-QDs, because N atoms trapped within Si-QDs, which was evaluated by secondary ion mass spectrometry, terminate the dangling bonds within Si-QDs and at the Si/SiO2 interface. Additionally, the IPL of Si-QDs showed the maximum value at the optimal DN+ of 5 × 1015 cm−2, which was 1.4-fold higher than that observed without hot N+-ion implantation. With a short post-annealing time (<60 min), the increase in IPL owing to N+-ion implantation was considerably larger than that caused by N2 annealing, which is likely due to the efficiency of the termination of the dangling bonds of the Si-QDs by the N+-ions. This is an advantage of the hot N+-ion implantation technique. Forming gas annealing after furnace annealing also induced a larger IPL than that observed before forming gas annealing. However, the maximum IPL observed after forming gas annealing was completely independent of the conditions of furnace annealing and DN+. This suggests that the perfect termination of the dangling bonds of the Si-QDs may be realized via forming gas annealing after furnace annealing.\",\"PeriodicalId\":15088,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0179699\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0179699","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Photoluminescence enhancement from hot nitrogen-ion implanted Si quantum dots embedded within SiO2 layer
Using the novel process of hot N+-ion implantation at 800 °C into Si quantum dots (Si-QDs) with approximately 3.2 nm fabricated by hot Si+-ion implantation into an SiO2 layer and post-Ar annealing, we experimentally demonstrated that the photoluminescence intensity (IPL) of the Si-QDs increased with increasing N+-ion dose (DN+). Post-N2 high-temperature annealing without hot N+-ion implantation, as a reference process, also increased the IPL of Si-QDs, because N atoms trapped within Si-QDs, which was evaluated by secondary ion mass spectrometry, terminate the dangling bonds within Si-QDs and at the Si/SiO2 interface. Additionally, the IPL of Si-QDs showed the maximum value at the optimal DN+ of 5 × 1015 cm−2, which was 1.4-fold higher than that observed without hot N+-ion implantation. With a short post-annealing time (<60 min), the increase in IPL owing to N+-ion implantation was considerably larger than that caused by N2 annealing, which is likely due to the efficiency of the termination of the dangling bonds of the Si-QDs by the N+-ions. This is an advantage of the hot N+-ion implantation technique. Forming gas annealing after furnace annealing also induced a larger IPL than that observed before forming gas annealing. However, the maximum IPL observed after forming gas annealing was completely independent of the conditions of furnace annealing and DN+. This suggests that the perfect termination of the dangling bonds of the Si-QDs may be realized via forming gas annealing after furnace annealing.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces