绝缘铁磁石榴石的畴壁速度加快

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY APL Materials Pub Date : 2024-01-09 DOI:10.1063/5.0159669
Lucas Caretta, Can Onur Avci
{"title":"绝缘铁磁石榴石的畴壁速度加快","authors":"Lucas Caretta, Can Onur Avci","doi":"10.1063/5.0159669","DOIUrl":null,"url":null,"abstract":"Magnetic domain walls (DWs) are the finite boundaries that separate the regions of uniform magnetization in a magnetic material. They constitute a key research topic in condensed matter physics due to their intriguing physics and relevance in technological applications. A multitude of spintronic concepts for memory, logic, and data processing applications have been proposed, relying on the precise control of DWs via magnetic fields and electric currents. Intensive research into DWs has also spurred interest into chiral magnetic interactions, topology, and relativistic physics. In this article, we will first review the rapid evolution of magnetic DW research and, in particular, the current-driven DW motion enabled by the improved understanding of DW dynamics and the development of suitable ferrimagnetic thin films. We will then provide an outlook on future directions in DW dynamics research exploiting ferrimagnetic garnets as a tunable material platform.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"56 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Domain walls speed up in insulating ferrimagnetic garnets\",\"authors\":\"Lucas Caretta, Can Onur Avci\",\"doi\":\"10.1063/5.0159669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic domain walls (DWs) are the finite boundaries that separate the regions of uniform magnetization in a magnetic material. They constitute a key research topic in condensed matter physics due to their intriguing physics and relevance in technological applications. A multitude of spintronic concepts for memory, logic, and data processing applications have been proposed, relying on the precise control of DWs via magnetic fields and electric currents. Intensive research into DWs has also spurred interest into chiral magnetic interactions, topology, and relativistic physics. In this article, we will first review the rapid evolution of magnetic DW research and, in particular, the current-driven DW motion enabled by the improved understanding of DW dynamics and the development of suitable ferrimagnetic thin films. We will then provide an outlook on future directions in DW dynamics research exploiting ferrimagnetic garnets as a tunable material platform.\",\"PeriodicalId\":7985,\"journal\":{\"name\":\"APL Materials\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0159669\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0159669","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

磁畴墙(DW)是磁性材料中分隔均匀磁化区域的有限边界。由于其引人入胜的物理特性和技术应用的相关性,它们构成了凝聚态物理学的一个关键研究课题。依靠通过磁场和电流对 DW 的精确控制,人们提出了许多用于存储器、逻辑和数据处理应用的自旋电子概念。对 DW 的深入研究也激发了人们对手性磁相互作用、拓扑学和相对论物理学的兴趣。在本文中,我们将首先回顾磁性 DW 研究的快速发展,特别是通过提高对 DW 动力学的理解和开发合适的铁磁薄膜而实现的电流驱动 DW 运动。然后,我们将展望利用铁磁石榴石作为可调材料平台进行 DW 动力学研究的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Domain walls speed up in insulating ferrimagnetic garnets
Magnetic domain walls (DWs) are the finite boundaries that separate the regions of uniform magnetization in a magnetic material. They constitute a key research topic in condensed matter physics due to their intriguing physics and relevance in technological applications. A multitude of spintronic concepts for memory, logic, and data processing applications have been proposed, relying on the precise control of DWs via magnetic fields and electric currents. Intensive research into DWs has also spurred interest into chiral magnetic interactions, topology, and relativistic physics. In this article, we will first review the rapid evolution of magnetic DW research and, in particular, the current-driven DW motion enabled by the improved understanding of DW dynamics and the development of suitable ferrimagnetic thin films. We will then provide an outlook on future directions in DW dynamics research exploiting ferrimagnetic garnets as a tunable material platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APL Materials
APL Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
9.60
自引率
3.30%
发文量
199
审稿时长
2 months
期刊介绍: APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications. In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.
期刊最新文献
Energy harvesting and human motion sensing of a 2D piezoelectric hybrid organic–inorganic perovskite A first-principles study on structural stability and magnetoelectric coupling of two-dimensional BaTiO3 ultrathin film with Cr and Cu substituting Ti site Investigation of transverse exchange-springs in electrodeposited nano-heterostructured films through first-order reversal curve analysis Solid phase epitaxy of SrRuO3 encapsulated by SrTiO3 membranes Microgel-based etalon membranes: Characterization and properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1