Guocheng Liao, Yu Su, Juba Ziani, Adam Wierman, Jianwei Huang
{"title":"数据采集中的隐私悖论与偏差-方差的最佳权衡","authors":"Guocheng Liao, Yu Su, Juba Ziani, Adam Wierman, Jianwei Huang","doi":"10.1287/moor.2023.0022","DOIUrl":null,"url":null,"abstract":"Whereas users claim to be concerned about privacy, often they do little to protect their privacy in their online actions. One prominent explanation for this privacy paradox is that, when an individual shares data, it is not just the individual’s privacy that is compromised; the privacy of other individuals with correlated data is also compromised. This information leakage encourages oversharing of data and significantly impacts the incentives of individuals in online platforms. In this paper, we study the design of mechanisms for data acquisition in settings with information leakage and verifiable data. We design an incentive-compatible mechanism that optimizes the worst case trade-off between bias and variance of the estimation subject to a budget constraint, with which the worst case is over the unknown correlation between costs and data. Additionally, we characterize the structure of the optimal mechanism in closed form and study monotonicity and nonmonotonicity properties of the marketplace.Funding: This work is supported by the National Natural Science Foundation of China [Grants 62202512 and 62271434], Shenzhen Science and Technology Program [Grant JCYJ20210324120011032], Guangdong Basic and Applied Basic Research Foundation [Grant 2021B1515120008], Shenzhen Key Laboratory of Crowd Intelligence Empowered Low-Carbon Energy Network [Grant ZDSYS20220606100601002], and the Shenzhen Institute of Artificial Intelligence and Robotics for Society. This work is also supported by the National Science Foundation [Grants CNS-2146814, CPS-2136197, CNS-2106403, and NGSDI-2105648].Supplemental Material: The online appendix is available at https://doi.org/10.1287/moor.2023.0022 .","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Privacy Paradox and Optimal Bias–Variance Trade-offs in Data Acquisition\",\"authors\":\"Guocheng Liao, Yu Su, Juba Ziani, Adam Wierman, Jianwei Huang\",\"doi\":\"10.1287/moor.2023.0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Whereas users claim to be concerned about privacy, often they do little to protect their privacy in their online actions. One prominent explanation for this privacy paradox is that, when an individual shares data, it is not just the individual’s privacy that is compromised; the privacy of other individuals with correlated data is also compromised. This information leakage encourages oversharing of data and significantly impacts the incentives of individuals in online platforms. In this paper, we study the design of mechanisms for data acquisition in settings with information leakage and verifiable data. We design an incentive-compatible mechanism that optimizes the worst case trade-off between bias and variance of the estimation subject to a budget constraint, with which the worst case is over the unknown correlation between costs and data. Additionally, we characterize the structure of the optimal mechanism in closed form and study monotonicity and nonmonotonicity properties of the marketplace.Funding: This work is supported by the National Natural Science Foundation of China [Grants 62202512 and 62271434], Shenzhen Science and Technology Program [Grant JCYJ20210324120011032], Guangdong Basic and Applied Basic Research Foundation [Grant 2021B1515120008], Shenzhen Key Laboratory of Crowd Intelligence Empowered Low-Carbon Energy Network [Grant ZDSYS20220606100601002], and the Shenzhen Institute of Artificial Intelligence and Robotics for Society. This work is also supported by the National Science Foundation [Grants CNS-2146814, CPS-2136197, CNS-2106403, and NGSDI-2105648].Supplemental Material: The online appendix is available at https://doi.org/10.1287/moor.2023.0022 .\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2023.0022\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2023.0022","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The Privacy Paradox and Optimal Bias–Variance Trade-offs in Data Acquisition
Whereas users claim to be concerned about privacy, often they do little to protect their privacy in their online actions. One prominent explanation for this privacy paradox is that, when an individual shares data, it is not just the individual’s privacy that is compromised; the privacy of other individuals with correlated data is also compromised. This information leakage encourages oversharing of data and significantly impacts the incentives of individuals in online platforms. In this paper, we study the design of mechanisms for data acquisition in settings with information leakage and verifiable data. We design an incentive-compatible mechanism that optimizes the worst case trade-off between bias and variance of the estimation subject to a budget constraint, with which the worst case is over the unknown correlation between costs and data. Additionally, we characterize the structure of the optimal mechanism in closed form and study monotonicity and nonmonotonicity properties of the marketplace.Funding: This work is supported by the National Natural Science Foundation of China [Grants 62202512 and 62271434], Shenzhen Science and Technology Program [Grant JCYJ20210324120011032], Guangdong Basic and Applied Basic Research Foundation [Grant 2021B1515120008], Shenzhen Key Laboratory of Crowd Intelligence Empowered Low-Carbon Energy Network [Grant ZDSYS20220606100601002], and the Shenzhen Institute of Artificial Intelligence and Robotics for Society. This work is also supported by the National Science Foundation [Grants CNS-2146814, CPS-2136197, CNS-2106403, and NGSDI-2105648].Supplemental Material: The online appendix is available at https://doi.org/10.1287/moor.2023.0022 .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.