晶圆键合两端 III-V//Si 三结太阳能电池,AM1.5g 功率转换效率达 36.1%

IF 8 2区 材料科学 Q1 ENERGY & FUELS Progress in Photovoltaics Pub Date : 2024-01-09 DOI:10.1002/pip.3769
Patrick Schygulla, Ralph Müller, Oliver Höhn, Michael Schachtner, David Chojniak, Andrea Cordaro, Stefan Tabernig, Benedikt Bläsi, Albert Polman, Gerald Siefer, David Lackner, Frank Dimroth
{"title":"晶圆键合两端 III-V//Si 三结太阳能电池,AM1.5g 功率转换效率达 36.1%","authors":"Patrick Schygulla, Ralph Müller, Oliver Höhn, Michael Schachtner, David Chojniak, Andrea Cordaro, Stefan Tabernig, Benedikt Bläsi, Albert Polman, Gerald Siefer, David Lackner, Frank Dimroth","doi":"10.1002/pip.3769","DOIUrl":null,"url":null,"abstract":"In this work, we present the fabrication and analysis of a wafer-bonded GaInP/GaInAsP//Si triple-junction solar cell with 36.1% conversion efficiency under AM1.5g spectral illumination. The new cell design presents an improvement over previous III-V//Si triple-junction cells by the implementation of a rear-heterojunction for the middle cell. Furthermore, an advanced metallodielectric rear-side grating was used for light trapping enhancement in the silicon bottom cell that increased the silicon subcell current by 1.4 mA/cm<sup>2</sup>. The external radiative efficiency was quantified to be 1.5 times higher compared to a reference device with a GaInAsP homojunction middle cell. A luminescent coupling factor of 0.46 between the middle and bottom subcell was determined. The share of recombination in the space-charge region was experimentally shown to be insignificant as intended by the rear-heterojunction design. Overall, the open-circuit voltage of the middle cell increased by 61 mV compared to the previous generation. Given the established long-term stability of III-V and silicon-based solar cells, these results are promising steps towards the future employment of III-V/Si tandem solar cells.","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"79 1","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wafer-bonded two-terminal III-V//Si triple-junction solar cell with power conversion efficiency of 36.1% at AM1.5g\",\"authors\":\"Patrick Schygulla, Ralph Müller, Oliver Höhn, Michael Schachtner, David Chojniak, Andrea Cordaro, Stefan Tabernig, Benedikt Bläsi, Albert Polman, Gerald Siefer, David Lackner, Frank Dimroth\",\"doi\":\"10.1002/pip.3769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present the fabrication and analysis of a wafer-bonded GaInP/GaInAsP//Si triple-junction solar cell with 36.1% conversion efficiency under AM1.5g spectral illumination. The new cell design presents an improvement over previous III-V//Si triple-junction cells by the implementation of a rear-heterojunction for the middle cell. Furthermore, an advanced metallodielectric rear-side grating was used for light trapping enhancement in the silicon bottom cell that increased the silicon subcell current by 1.4 mA/cm<sup>2</sup>. The external radiative efficiency was quantified to be 1.5 times higher compared to a reference device with a GaInAsP homojunction middle cell. A luminescent coupling factor of 0.46 between the middle and bottom subcell was determined. The share of recombination in the space-charge region was experimentally shown to be insignificant as intended by the rear-heterojunction design. Overall, the open-circuit voltage of the middle cell increased by 61 mV compared to the previous generation. Given the established long-term stability of III-V and silicon-based solar cells, these results are promising steps towards the future employment of III-V/Si tandem solar cells.\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pip.3769\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pip.3769","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们介绍了一种晶圆键合 GaInP/GaInAsP//Si 三结太阳能电池的制造和分析,该电池在 AM1.5g 光谱照明下的转换效率为 36.1%。新的电池设计通过在中间电池采用后置异质结,改进了以往的 III-V//Si 三结电池。此外,在硅底部电池中使用了先进的金属介质后侧光栅来增强光捕获,从而将硅子电池的电流提高了 1.4 mA/cm2。与采用砷化镓同质结中间电池的参考器件相比,外部辐射效率提高了 1.5 倍。中间和底部子电池之间的发光耦合系数为 0.46。实验表明,空间电荷区的重组比例很小,这也是后部异质结设计的初衷。总体而言,与上一代产品相比,中间电池的开路电压提高了 61 mV。鉴于三-五代和硅基太阳能电池的长期稳定性已得到证实,这些结果为三-五代和硅基串联太阳能电池的未来应用带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wafer-bonded two-terminal III-V//Si triple-junction solar cell with power conversion efficiency of 36.1% at AM1.5g
In this work, we present the fabrication and analysis of a wafer-bonded GaInP/GaInAsP//Si triple-junction solar cell with 36.1% conversion efficiency under AM1.5g spectral illumination. The new cell design presents an improvement over previous III-V//Si triple-junction cells by the implementation of a rear-heterojunction for the middle cell. Furthermore, an advanced metallodielectric rear-side grating was used for light trapping enhancement in the silicon bottom cell that increased the silicon subcell current by 1.4 mA/cm2. The external radiative efficiency was quantified to be 1.5 times higher compared to a reference device with a GaInAsP homojunction middle cell. A luminescent coupling factor of 0.46 between the middle and bottom subcell was determined. The share of recombination in the space-charge region was experimentally shown to be insignificant as intended by the rear-heterojunction design. Overall, the open-circuit voltage of the middle cell increased by 61 mV compared to the previous generation. Given the established long-term stability of III-V and silicon-based solar cells, these results are promising steps towards the future employment of III-V/Si tandem solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Photovoltaics
Progress in Photovoltaics 工程技术-能源与燃料
CiteScore
18.10
自引率
7.50%
发文量
130
审稿时长
5.4 months
期刊介绍: Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers. The key criterion is that all papers submitted should report substantial “progress” in photovoltaics. Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables. Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.
期刊最新文献
Issue Information Photovoltaics Literature Survey (No. 194) Issue Information Investigation of Potential-Induced Degradation and Recovery in Perovskite Minimodules Role of Ag Addition on the Microscopic Material Properties of (Ag,Cu)(In,Ga)Se2 Absorbers and Their Effects on Losses in the Open-Circuit Voltage of Corresponding Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1