氧化锌对海水中微弧氧化涂层电化学特性的影响

IF 2.3 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Anti-corrosion Methods and Materials Pub Date : 2024-01-11 DOI:10.1108/acmm-11-2023-2917
Qiang Sun, Quantong Jiang, Siwei Wu, Chang Liu, Heng Tang, L. Song, Hao Shi, Jizhou Duan, BaoRong Hou
{"title":"氧化锌对海水中微弧氧化涂层电化学特性的影响","authors":"Qiang Sun, Quantong Jiang, Siwei Wu, Chang Liu, Heng Tang, L. Song, Hao Shi, Jizhou Duan, BaoRong Hou","doi":"10.1108/acmm-11-2023-2917","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The purpose of this paper is to explore the effect of ZnO on the structure and properties of micro-arc oxidation (MAO) coating on rare earth magnesium alloy under large concentration gradient.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The macroscopic and microscopic morphology, thickness, surface roughness, chemical composition and structure of the coating were characterized by different characterization methods. The corrosion resistance of the film was studied by electrochemical and scanning Kelvin probe force microscopy. The results show that the addition of ZnO can significantly improve the compactness and corrosion resistance of the MAO coating, but the high concentration of ZnO will cause microcracks, which will reduce the corrosion resistance to a certain extent.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>When the concentration of zinc oxide is 8 g/L, the compactness and corrosion resistance of the coating are the best, and the thickness of the coating is positively correlated with the concentration of ZnO.</p><!--/ Abstract__block -->\n<h3>Research limitations/implications</h3>\n<p>Too high concentration of ZnO reduces the performance of MAO coating.</p><!--/ Abstract__block -->\n<h3>Practical implications</h3>\n<p>The MAO coating prepared by adding ZnO has good corrosion resistance. Combined with organic coatings, it can be applied in corrosive marine environments, such as ship parts and hulls. To a certain extent, it can reduce the economic loss caused by corrosion.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The effect of ZnO on the corrosion resistance of MAO coating in electrolyte solution was studied systematically, and the conclusion was new to the common knowledge.</p><!--/ Abstract__block -->","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":"23 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of zinc oxide on the electrochemical properties of micro-arc oxidation coatings in seawater\",\"authors\":\"Qiang Sun, Quantong Jiang, Siwei Wu, Chang Liu, Heng Tang, L. Song, Hao Shi, Jizhou Duan, BaoRong Hou\",\"doi\":\"10.1108/acmm-11-2023-2917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>The purpose of this paper is to explore the effect of ZnO on the structure and properties of micro-arc oxidation (MAO) coating on rare earth magnesium alloy under large concentration gradient.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>The macroscopic and microscopic morphology, thickness, surface roughness, chemical composition and structure of the coating were characterized by different characterization methods. The corrosion resistance of the film was studied by electrochemical and scanning Kelvin probe force microscopy. The results show that the addition of ZnO can significantly improve the compactness and corrosion resistance of the MAO coating, but the high concentration of ZnO will cause microcracks, which will reduce the corrosion resistance to a certain extent.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>When the concentration of zinc oxide is 8 g/L, the compactness and corrosion resistance of the coating are the best, and the thickness of the coating is positively correlated with the concentration of ZnO.</p><!--/ Abstract__block -->\\n<h3>Research limitations/implications</h3>\\n<p>Too high concentration of ZnO reduces the performance of MAO coating.</p><!--/ Abstract__block -->\\n<h3>Practical implications</h3>\\n<p>The MAO coating prepared by adding ZnO has good corrosion resistance. Combined with organic coatings, it can be applied in corrosive marine environments, such as ship parts and hulls. To a certain extent, it can reduce the economic loss caused by corrosion.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The effect of ZnO on the corrosion resistance of MAO coating in electrolyte solution was studied systematically, and the conclusion was new to the common knowledge.</p><!--/ Abstract__block -->\",\"PeriodicalId\":8217,\"journal\":{\"name\":\"Anti-corrosion Methods and Materials\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-corrosion Methods and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1108/acmm-11-2023-2917\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-corrosion Methods and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/acmm-11-2023-2917","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

设计/方法/途径采用不同的表征方法对涂层的宏观和微观形貌、厚度、表面粗糙度、化学成分和结构进行了表征。通过电化学和扫描开尔文探针力显微镜研究了薄膜的耐腐蚀性。结果表明,氧化锌的添加能显著提高 MAO 涂层的致密性和耐腐蚀性,但高浓度的氧化锌会造成微裂纹,从而在一定程度上降低耐腐蚀性。研究结果当氧化锌的浓度为 8 g/L 时,涂层的致密性和耐腐蚀性最好,涂层的厚度与氧化锌的浓度呈正相关。添加 ZnO 制备的 MAO 涂层具有良好的耐腐蚀性,可与有机涂层结合应用于腐蚀性海洋环境,如船舶部件和船体。原创性/价值系统研究了氧化锌对电解质溶液中 MAO 涂层耐腐蚀性的影响,得出了新的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of zinc oxide on the electrochemical properties of micro-arc oxidation coatings in seawater

Purpose

The purpose of this paper is to explore the effect of ZnO on the structure and properties of micro-arc oxidation (MAO) coating on rare earth magnesium alloy under large concentration gradient.

Design/methodology/approach

The macroscopic and microscopic morphology, thickness, surface roughness, chemical composition and structure of the coating were characterized by different characterization methods. The corrosion resistance of the film was studied by electrochemical and scanning Kelvin probe force microscopy. The results show that the addition of ZnO can significantly improve the compactness and corrosion resistance of the MAO coating, but the high concentration of ZnO will cause microcracks, which will reduce the corrosion resistance to a certain extent.

Findings

When the concentration of zinc oxide is 8 g/L, the compactness and corrosion resistance of the coating are the best, and the thickness of the coating is positively correlated with the concentration of ZnO.

Research limitations/implications

Too high concentration of ZnO reduces the performance of MAO coating.

Practical implications

The MAO coating prepared by adding ZnO has good corrosion resistance. Combined with organic coatings, it can be applied in corrosive marine environments, such as ship parts and hulls. To a certain extent, it can reduce the economic loss caused by corrosion.

Originality/value

The effect of ZnO on the corrosion resistance of MAO coating in electrolyte solution was studied systematically, and the conclusion was new to the common knowledge.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Anti-corrosion Methods and Materials
Anti-corrosion Methods and Materials 工程技术-冶金工程
CiteScore
2.80
自引率
16.70%
发文量
61
审稿时长
13.5 months
期刊介绍: Anti-Corrosion Methods and Materials publishes a broad coverage of the materials and techniques employed in corrosion prevention. Coverage is essentially of a practical nature and designed to be of material benefit to those working in the field. Proven applications are covered together with company news and new product information. Anti-Corrosion Methods and Materials now also includes research articles that reflect the most interesting and strategically important research and development activities from around the world. Every year, industry pays a massive and rising cost for its corrosion problems. Research and development into new materials, processes and initiatives to combat this loss is increasing, and new findings are constantly coming to light which can help to beat corrosion problems throughout industry. This journal uniquely focuses on these exciting developments to make essential reading for anyone aiming to regain profits lost through corrosion difficulties. • New methods, materials and software • New developments in research and industry • Stainless steels • Protection of structural steelwork • Industry update, conference news, dates and events • Environmental issues • Health & safety, including EC regulations • Corrosion monitoring and plant health assessment • The latest equipment and processes • Corrosion cost and corrosion risk management.
期刊最新文献
Effect of graphene on mechanical and anti-corrosion properties of TiO2-SiO2 sol-gel coating Enhancing the corrosion resistance of a novel bio-compatible Mg-1Zn-0.45Ca alloy in simulated body fluid by a phosphate treated PEO coating A case study: anti-corrosion performances of plasma sprayed AT13 coatings on CrZrCu thin wall cylinder with adjusted parameters for controlling deformation A highly efficient method for characterizing the kinetics of hydrogen evolution reaction Research of two kinds of PANI@semiconductor based photocathodic coating corrosion protection effect and mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1