Saluda Stapleton, Grace Welch, Lindsay DiBerardo, Linnea R Freeman
{"title":"饮食诱发肥胖小鼠模型的性别差异:肠道微生物组的作用","authors":"Saluda Stapleton, Grace Welch, Lindsay DiBerardo, Linnea R Freeman","doi":"10.1186/s13293-023-00580-1","DOIUrl":null,"url":null,"abstract":"Recent decades have seen an exponential rise in global obesity prevalence, with rates nearly doubling in a span of 40 years. A comprehensive knowledge base regarding the systemic effects of obesity is required to create new preventative and therapeutic agents effective at combating the current obesity epidemic. Previous studies of diet-induced obesity utilizing mouse models have demonstrated a difference in bodyweight gain by sex. In such studies, female mice gained significantly less weight than male mice when given the same high fat (HF) diet, indicating a resistance to diet-induced obesity. Research has also shown sex differences in gut microbiome composition between males and females, indicated to be in part a result of sex hormones. Understanding metabolic differences between sexes could assist in the development of new measures for obesity prevention and treatment. This study aimed to characterize sex differences in weight gain, plasma lipid profiles, fecal microbiota composition, and fecal short chain fatty acid levels. We hypothesized a role for the gut microbiome in these sex differences that would be normalized following microbiome depletion. A mouse model was used to study these effects. Mice were divided into treatment groups by sex, diet, and presence/absence of an antibiotic cocktail to deplete genera in the gut microbiome. We hypothesized that sex differences would be present both in bodyweight gain and systemic measures of obesity, including hormone and circulating free fatty acid levels. We determined statistically significant differences for sex and/or treatment for the outcome measures. We confirm previous findings in which male mice gained significantly more weight than female mice fed the same high fat diet. However, sex differences persisted following antibiotic administration for microbiome depletion. We conclude that sex differences in the gut microbiome may contribute to sex differences in obesity, but they do not explain all of the differences. ","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"13 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sex differences in a mouse model of diet-induced obesity: the role of the gut microbiome\",\"authors\":\"Saluda Stapleton, Grace Welch, Lindsay DiBerardo, Linnea R Freeman\",\"doi\":\"10.1186/s13293-023-00580-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent decades have seen an exponential rise in global obesity prevalence, with rates nearly doubling in a span of 40 years. A comprehensive knowledge base regarding the systemic effects of obesity is required to create new preventative and therapeutic agents effective at combating the current obesity epidemic. Previous studies of diet-induced obesity utilizing mouse models have demonstrated a difference in bodyweight gain by sex. In such studies, female mice gained significantly less weight than male mice when given the same high fat (HF) diet, indicating a resistance to diet-induced obesity. Research has also shown sex differences in gut microbiome composition between males and females, indicated to be in part a result of sex hormones. Understanding metabolic differences between sexes could assist in the development of new measures for obesity prevention and treatment. This study aimed to characterize sex differences in weight gain, plasma lipid profiles, fecal microbiota composition, and fecal short chain fatty acid levels. We hypothesized a role for the gut microbiome in these sex differences that would be normalized following microbiome depletion. A mouse model was used to study these effects. Mice were divided into treatment groups by sex, diet, and presence/absence of an antibiotic cocktail to deplete genera in the gut microbiome. We hypothesized that sex differences would be present both in bodyweight gain and systemic measures of obesity, including hormone and circulating free fatty acid levels. We determined statistically significant differences for sex and/or treatment for the outcome measures. We confirm previous findings in which male mice gained significantly more weight than female mice fed the same high fat diet. However, sex differences persisted following antibiotic administration for microbiome depletion. We conclude that sex differences in the gut microbiome may contribute to sex differences in obesity, but they do not explain all of the differences. \",\"PeriodicalId\":8890,\"journal\":{\"name\":\"Biology of Sex Differences\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology of Sex Differences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13293-023-00580-1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of Sex Differences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13293-023-00580-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Sex differences in a mouse model of diet-induced obesity: the role of the gut microbiome
Recent decades have seen an exponential rise in global obesity prevalence, with rates nearly doubling in a span of 40 years. A comprehensive knowledge base regarding the systemic effects of obesity is required to create new preventative and therapeutic agents effective at combating the current obesity epidemic. Previous studies of diet-induced obesity utilizing mouse models have demonstrated a difference in bodyweight gain by sex. In such studies, female mice gained significantly less weight than male mice when given the same high fat (HF) diet, indicating a resistance to diet-induced obesity. Research has also shown sex differences in gut microbiome composition between males and females, indicated to be in part a result of sex hormones. Understanding metabolic differences between sexes could assist in the development of new measures for obesity prevention and treatment. This study aimed to characterize sex differences in weight gain, plasma lipid profiles, fecal microbiota composition, and fecal short chain fatty acid levels. We hypothesized a role for the gut microbiome in these sex differences that would be normalized following microbiome depletion. A mouse model was used to study these effects. Mice were divided into treatment groups by sex, diet, and presence/absence of an antibiotic cocktail to deplete genera in the gut microbiome. We hypothesized that sex differences would be present both in bodyweight gain and systemic measures of obesity, including hormone and circulating free fatty acid levels. We determined statistically significant differences for sex and/or treatment for the outcome measures. We confirm previous findings in which male mice gained significantly more weight than female mice fed the same high fat diet. However, sex differences persisted following antibiotic administration for microbiome depletion. We conclude that sex differences in the gut microbiome may contribute to sex differences in obesity, but they do not explain all of the differences.
期刊介绍:
Biology of Sex Differences is a unique scientific journal focusing on sex differences in physiology, behavior, and disease from molecular to phenotypic levels, incorporating both basic and clinical research. The journal aims to enhance understanding of basic principles and facilitate the development of therapeutic and diagnostic tools specific to sex differences. As an open-access journal, it is the official publication of the Organization for the Study of Sex Differences and co-published by the Society for Women's Health Research.
Topical areas include, but are not limited to sex differences in: genomics; the microbiome; epigenetics; molecular and cell biology; tissue biology; physiology; interaction of tissue systems, in any system including adipose, behavioral, cardiovascular, immune, muscular, neural, renal, and skeletal; clinical studies bearing on sex differences in disease or response to therapy.