Brajesh P Kaistha, Gozde Kar, Andreas Dannhorn, Amanda Watkins, Grace Opoku-Ansah, Kristina Ilieva, Stefanie Mullins, Judith Anderton, Elena Galvani, Fabien Garcon, Jean-Martin Lapointe, Lee Brown, James Hair, Tim Slidel, Nadia Luheshi, Kelli Ryan, Elizabeth Hardaker, Simon Dovedi, Rakesh Kumar, Robert W Wilkinson, Scott A Hammond, Jim Eyles
{"title":"抗CD73和抗PD-L1单克隆抗体联合细胞毒疗法的疗效和药效学效应:小鼠肿瘤模型观察。","authors":"Brajesh P Kaistha, Gozde Kar, Andreas Dannhorn, Amanda Watkins, Grace Opoku-Ansah, Kristina Ilieva, Stefanie Mullins, Judith Anderton, Elena Galvani, Fabien Garcon, Jean-Martin Lapointe, Lee Brown, James Hair, Tim Slidel, Nadia Luheshi, Kelli Ryan, Elizabeth Hardaker, Simon Dovedi, Rakesh Kumar, Robert W Wilkinson, Scott A Hammond, Jim Eyles","doi":"10.1080/15384047.2023.2296048","DOIUrl":null,"url":null,"abstract":"<p><p>CD73 is a cell surface 5'nucleotidase (NT5E) and key node in the catabolic process generating immunosuppressive adenosine in cancer. Using a murine monoclonal antibody surrogate of Oleclumab, we investigated the effect of CD73 inhibition in concert with cytotoxic therapies (chemotherapies as well as fractionated radiotherapy) and PD-L1 blockade. Our results highlight improved survival in syngeneic tumor models of colorectal cancer (CT26 and MC38) and sarcoma (MCA205). This therapeutic outcome was in part driven by cytotoxic CD8 T-cells, as evidenced by the detrimental effect of CD8 depleting antibody treatment of MCA205 tumor bearing mice treated with anti-CD73, anti-PD-L1 and 5-Fluorouracil+Oxaliplatin (5FU+OHP). We hypothesize that the improved responses are tumor microenvironment (TME)-driven, as suggested by the lack of anti-CD73 enhanced cytopathic effects mediated by 5FU+OHP on cell lines <i>in vitro</i>. Pharmacodynamic analysis, using imaging mass cytometry and RNA-sequencing, revealed noteworthy changes in specific cell populations like cytotoxic T cells, B cells and NK cells in the CT26 TME. Transcriptomic analysis highlighted treatment-related modulation of gene profiles associated with an immune response, NK and T-cell activation, T cell receptor signaling and interferon (types 1 & 2) pathways. Inclusion of comparator groups representing the various components of the combination allowed deconvolution of contribution of the individual therapeutic elements; highlighting specific effects mediated by the anti-CD73 antibody with respect to immune-cell representation, chemotaxis and myeloid biology. These pre-clinical data reflect complementarity of adenosine blockade with cytotoxic therapy, and T-cell checkpoint inhibition, and provides new mechanistic insights in support of combination therapy.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10793677/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficacy and pharmacodynamic effect of anti-CD73 and anti-PD-L1 monoclonal antibodies in combination with cytotoxic therapy: observations from mouse tumor models.\",\"authors\":\"Brajesh P Kaistha, Gozde Kar, Andreas Dannhorn, Amanda Watkins, Grace Opoku-Ansah, Kristina Ilieva, Stefanie Mullins, Judith Anderton, Elena Galvani, Fabien Garcon, Jean-Martin Lapointe, Lee Brown, James Hair, Tim Slidel, Nadia Luheshi, Kelli Ryan, Elizabeth Hardaker, Simon Dovedi, Rakesh Kumar, Robert W Wilkinson, Scott A Hammond, Jim Eyles\",\"doi\":\"10.1080/15384047.2023.2296048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CD73 is a cell surface 5'nucleotidase (NT5E) and key node in the catabolic process generating immunosuppressive adenosine in cancer. Using a murine monoclonal antibody surrogate of Oleclumab, we investigated the effect of CD73 inhibition in concert with cytotoxic therapies (chemotherapies as well as fractionated radiotherapy) and PD-L1 blockade. Our results highlight improved survival in syngeneic tumor models of colorectal cancer (CT26 and MC38) and sarcoma (MCA205). This therapeutic outcome was in part driven by cytotoxic CD8 T-cells, as evidenced by the detrimental effect of CD8 depleting antibody treatment of MCA205 tumor bearing mice treated with anti-CD73, anti-PD-L1 and 5-Fluorouracil+Oxaliplatin (5FU+OHP). We hypothesize that the improved responses are tumor microenvironment (TME)-driven, as suggested by the lack of anti-CD73 enhanced cytopathic effects mediated by 5FU+OHP on cell lines <i>in vitro</i>. Pharmacodynamic analysis, using imaging mass cytometry and RNA-sequencing, revealed noteworthy changes in specific cell populations like cytotoxic T cells, B cells and NK cells in the CT26 TME. Transcriptomic analysis highlighted treatment-related modulation of gene profiles associated with an immune response, NK and T-cell activation, T cell receptor signaling and interferon (types 1 & 2) pathways. Inclusion of comparator groups representing the various components of the combination allowed deconvolution of contribution of the individual therapeutic elements; highlighting specific effects mediated by the anti-CD73 antibody with respect to immune-cell representation, chemotaxis and myeloid biology. These pre-clinical data reflect complementarity of adenosine blockade with cytotoxic therapy, and T-cell checkpoint inhibition, and provides new mechanistic insights in support of combination therapy.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10793677/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15384047.2023.2296048\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2023.2296048","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
CD73 是一种细胞表面 5'nucleotidase (NT5E),是癌症中产生免疫抑制腺苷的分解过程中的关键节点。我们使用小鼠单克隆抗体奥利珠单抗(Oleclumab)替代物,研究了CD73抑制与细胞毒疗法(化疗和分次放疗)和PD-L1阻断的协同作用。我们的研究结果表明,结直肠癌(CT26 和 MC38)和肉瘤(MCA205)共生肿瘤模型的生存率得到了改善。这种治疗结果部分是由细胞毒性 CD8 T 细胞驱动的,这一点可以从 CD8 清除抗体对接受抗 CD73、抗 PD-L1 和 5-氟尿嘧啶+奥沙利铂(5FU+OHP)治疗的 MCA205 肿瘤小鼠的不利影响得到证明。我们推测,抗 CD73 对体外细胞系的细胞病理效应没有增强,这说明反应的改善是由肿瘤微环境(TME)驱动的。利用成像质谱和 RNA 序列进行的药效学分析显示,CT26 TME 中的特定细胞群(如细胞毒性 T 细胞、B 细胞和 NK 细胞)发生了显著变化。转录组分析强调了与免疫反应、NK 和 T 细胞活化、T 细胞受体信号转导和干扰素(1 型和 2 型)通路相关的基因谱的治疗相关调控。纳入代表联合疗法各种成分的比较组后,可以对单个治疗要素的贡献进行解构;突出了抗 CD73 抗体在免疫细胞代表性、趋化性和骨髓生物学方面介导的特定效应。这些临床前数据反映了腺苷阻断与细胞毒疗法和 T 细胞检查点抑制的互补性,并为支持联合疗法提供了新的机理见解。
Efficacy and pharmacodynamic effect of anti-CD73 and anti-PD-L1 monoclonal antibodies in combination with cytotoxic therapy: observations from mouse tumor models.
CD73 is a cell surface 5'nucleotidase (NT5E) and key node in the catabolic process generating immunosuppressive adenosine in cancer. Using a murine monoclonal antibody surrogate of Oleclumab, we investigated the effect of CD73 inhibition in concert with cytotoxic therapies (chemotherapies as well as fractionated radiotherapy) and PD-L1 blockade. Our results highlight improved survival in syngeneic tumor models of colorectal cancer (CT26 and MC38) and sarcoma (MCA205). This therapeutic outcome was in part driven by cytotoxic CD8 T-cells, as evidenced by the detrimental effect of CD8 depleting antibody treatment of MCA205 tumor bearing mice treated with anti-CD73, anti-PD-L1 and 5-Fluorouracil+Oxaliplatin (5FU+OHP). We hypothesize that the improved responses are tumor microenvironment (TME)-driven, as suggested by the lack of anti-CD73 enhanced cytopathic effects mediated by 5FU+OHP on cell lines in vitro. Pharmacodynamic analysis, using imaging mass cytometry and RNA-sequencing, revealed noteworthy changes in specific cell populations like cytotoxic T cells, B cells and NK cells in the CT26 TME. Transcriptomic analysis highlighted treatment-related modulation of gene profiles associated with an immune response, NK and T-cell activation, T cell receptor signaling and interferon (types 1 & 2) pathways. Inclusion of comparator groups representing the various components of the combination allowed deconvolution of contribution of the individual therapeutic elements; highlighting specific effects mediated by the anti-CD73 antibody with respect to immune-cell representation, chemotaxis and myeloid biology. These pre-clinical data reflect complementarity of adenosine blockade with cytotoxic therapy, and T-cell checkpoint inhibition, and provides new mechanistic insights in support of combination therapy.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.