{"title":"质谱法用于临床微生物学的现状与未来展望。","authors":"","doi":"10.1016/j.micinf.2024.105296","DOIUrl":null,"url":null,"abstract":"<div><p>In the last decade, MALDI-TOF Mass Spectrometry (MALDI-TOF MS) has been introduced and broadly accepted by clinical laboratory laboratories throughout the world as a powerful and efficient tool for rapid microbial identification. During the MALDI-TOF MS process, microbes are identified using either intact cells or cell extracts. The process is rapid, sensitive, and economical in terms of both labor and costs involved. Whilst MALDI-TOF MS is currently the gold-standard, it suffers from several shortcomings such as lack of direct information on antibiotic resistance, poor depth of analysis and insufficient discriminatory power for the distinction of closely related bacterial species or for reliably sub-differentiating isolates to the level of clones or strains. Thus, new approaches targeting proteins and allowing a better characterization of bacterial strains are strongly needed, if possible, on a very short time scale after sample collection in the hospital. Bottom-up proteomics (BUP) is a nice alternative to MALDI-TOF MS, offering the possibility for in-depth proteome analysis. Top-down proteomics (TDP) provides the highest molecular precision in proteomics, allowing the characterization of proteins at the proteoform level. A number of studies have already demonstrated the potential of these techniques in clinical microbiology. In this review, we will discuss the current state-of-the-art of MALDI-TOF MS for the rapid microbial identification and detection of resistance to antibiotics and describe emerging approaches, including bottom-up and top-down proteomics as well as ambient MS technologies.</p></div>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1286457924000169/pdfft?md5=09547e92e44af695d835bd8bcb95450e&pid=1-s2.0-S1286457924000169-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Present and future perspectives on mass spectrometry for clinical microbiology\",\"authors\":\"\",\"doi\":\"10.1016/j.micinf.2024.105296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the last decade, MALDI-TOF Mass Spectrometry (MALDI-TOF MS) has been introduced and broadly accepted by clinical laboratory laboratories throughout the world as a powerful and efficient tool for rapid microbial identification. During the MALDI-TOF MS process, microbes are identified using either intact cells or cell extracts. The process is rapid, sensitive, and economical in terms of both labor and costs involved. Whilst MALDI-TOF MS is currently the gold-standard, it suffers from several shortcomings such as lack of direct information on antibiotic resistance, poor depth of analysis and insufficient discriminatory power for the distinction of closely related bacterial species or for reliably sub-differentiating isolates to the level of clones or strains. Thus, new approaches targeting proteins and allowing a better characterization of bacterial strains are strongly needed, if possible, on a very short time scale after sample collection in the hospital. Bottom-up proteomics (BUP) is a nice alternative to MALDI-TOF MS, offering the possibility for in-depth proteome analysis. Top-down proteomics (TDP) provides the highest molecular precision in proteomics, allowing the characterization of proteins at the proteoform level. A number of studies have already demonstrated the potential of these techniques in clinical microbiology. In this review, we will discuss the current state-of-the-art of MALDI-TOF MS for the rapid microbial identification and detection of resistance to antibiotics and describe emerging approaches, including bottom-up and top-down proteomics as well as ambient MS technologies.</p></div>\",\"PeriodicalId\":18497,\"journal\":{\"name\":\"Microbes and Infection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1286457924000169/pdfft?md5=09547e92e44af695d835bd8bcb95450e&pid=1-s2.0-S1286457924000169-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbes and Infection\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1286457924000169\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Infection","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1286457924000169","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
近十年来,MALDI-TOF 质谱仪(MALDI-TOF MS)作为一种强大而高效的微生物快速鉴定工具,已被全世界的临床实验室引入并广泛接受。在 MALDI-TOF MS 过程中,微生物是通过完整细胞或细胞提取物进行鉴定的。该过程快速、灵敏,而且节省人力和成本。虽然 MALDI-TOF MS 是目前的黄金标准,但它也存在一些缺陷,如缺乏有关抗生素耐药性的直接信息、分析深度差、区分近缘细菌物种或将分离物可靠地细分到克隆或菌株水平的鉴别力不足。因此,我们亟需针对蛋白质的新方法,以便更好地鉴定细菌菌株的特征,如果可能的话,在医院采集样本后很短的时间内就能完成。自下而上蛋白质组学(BUP)是 MALDI-TOF MS 的理想替代方法,为深入蛋白质组分析提供了可能。自上而下蛋白质组学(TDP)提供了蛋白质组学中最高的分子精度,可在蛋白质形态水平上确定蛋白质的特征。许多研究已经证明了这些技术在临床微生物学中的潜力。在这篇综述中,我们将讨论 MALDI-TOF MS 目前在快速鉴定微生物和检测抗生素耐药性方面的先进技术,并介绍新出现的方法,包括自下而上和自上而下的蛋白质组学以及环境 MS 技术。
Present and future perspectives on mass spectrometry for clinical microbiology
In the last decade, MALDI-TOF Mass Spectrometry (MALDI-TOF MS) has been introduced and broadly accepted by clinical laboratory laboratories throughout the world as a powerful and efficient tool for rapid microbial identification. During the MALDI-TOF MS process, microbes are identified using either intact cells or cell extracts. The process is rapid, sensitive, and economical in terms of both labor and costs involved. Whilst MALDI-TOF MS is currently the gold-standard, it suffers from several shortcomings such as lack of direct information on antibiotic resistance, poor depth of analysis and insufficient discriminatory power for the distinction of closely related bacterial species or for reliably sub-differentiating isolates to the level of clones or strains. Thus, new approaches targeting proteins and allowing a better characterization of bacterial strains are strongly needed, if possible, on a very short time scale after sample collection in the hospital. Bottom-up proteomics (BUP) is a nice alternative to MALDI-TOF MS, offering the possibility for in-depth proteome analysis. Top-down proteomics (TDP) provides the highest molecular precision in proteomics, allowing the characterization of proteins at the proteoform level. A number of studies have already demonstrated the potential of these techniques in clinical microbiology. In this review, we will discuss the current state-of-the-art of MALDI-TOF MS for the rapid microbial identification and detection of resistance to antibiotics and describe emerging approaches, including bottom-up and top-down proteomics as well as ambient MS technologies.
期刊介绍:
Microbes and Infection publishes 10 peer-reviewed issues per year in all fields of infection and immunity, covering the different levels of host-microbe interactions, and in particular:
the molecular biology and cell biology of the crosstalk between hosts (human and model organisms) and microbes (viruses, bacteria, parasites and fungi), including molecular virulence and evasion mechanisms.
the immune response to infection, including pathogenesis and host susceptibility.
emerging human infectious diseases.
systems immunology.
molecular epidemiology/genetics of host pathogen interactions.
microbiota and host "interactions".
vaccine development, including novel strategies and adjuvants.
Clinical studies, accounts of clinical trials and biomarker studies in infectious diseases are within the scope of the journal.
Microbes and Infection publishes articles on human pathogens or pathogens of model systems. However, articles on other microbes can be published if they contribute to our understanding of basic mechanisms of host-pathogen interactions. Purely descriptive and preliminary studies are discouraged.