专业知识与技术的协同作用:放疗中的人工智能革命:个性化精准癌症治疗》。

Q3 Medicine The gulf journal of oncology Pub Date : 2024-01-01
Fadila Kouhen, Hanae El Gouach, Kamal Saidi, Zineb Dahbi, Nadia Errafiy, Hafsa Elmarrachi, Nabil Ismaili
{"title":"专业知识与技术的协同作用:放疗中的人工智能革命:个性化精准癌症治疗》。","authors":"Fadila Kouhen, Hanae El Gouach, Kamal Saidi, Zineb Dahbi, Nadia Errafiy, Hafsa Elmarrachi, Nabil Ismaili","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) has truly revolutionized many fields, including healthcare. In radiation oncology, AI has emerged as a powerful tool for improving the speed, accuracy and overall quality of radiotherapy treatments. The radiotherapy workflow involves complex processes that require coordination between healthcare professionals with diverse skills. AI and deep learning methods offer unprecedented potential to transform this workflow by leveraging imaging modalities, digital data processing and advanced software algorithms. Despite the revolutionary potential, challenges remain in seamlessly integrating AI into clinical workflows. Ethical considerations, data privacy, and algorithm interpretability necessitate cautious implementation. Additionally, fostering interdisciplinary collaboration between AI experts and radiation oncologists is imperative to harness the technology's full potential. This paper explores the impact of AI in four key areas of radiotherapy: automated segmentation, dosimetric and machine quality assurance, adaptive radiation therapy, and clinical outcome prediction. Key words: Artificial intelligence, Radiotherapy, Workflow, Accuracy, cancer ,machine-learning.</p>","PeriodicalId":53633,"journal":{"name":"The gulf journal of oncology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergizing Expertise and Technology: The Artificial intelligence Revolution in Radiotherapy for Personalized and Precise Cancer Treatment.\",\"authors\":\"Fadila Kouhen, Hanae El Gouach, Kamal Saidi, Zineb Dahbi, Nadia Errafiy, Hafsa Elmarrachi, Nabil Ismaili\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence (AI) has truly revolutionized many fields, including healthcare. In radiation oncology, AI has emerged as a powerful tool for improving the speed, accuracy and overall quality of radiotherapy treatments. The radiotherapy workflow involves complex processes that require coordination between healthcare professionals with diverse skills. AI and deep learning methods offer unprecedented potential to transform this workflow by leveraging imaging modalities, digital data processing and advanced software algorithms. Despite the revolutionary potential, challenges remain in seamlessly integrating AI into clinical workflows. Ethical considerations, data privacy, and algorithm interpretability necessitate cautious implementation. Additionally, fostering interdisciplinary collaboration between AI experts and radiation oncologists is imperative to harness the technology's full potential. This paper explores the impact of AI in four key areas of radiotherapy: automated segmentation, dosimetric and machine quality assurance, adaptive radiation therapy, and clinical outcome prediction. Key words: Artificial intelligence, Radiotherapy, Workflow, Accuracy, cancer ,machine-learning.</p>\",\"PeriodicalId\":53633,\"journal\":{\"name\":\"The gulf journal of oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The gulf journal of oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The gulf journal of oncology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)确实给包括医疗保健在内的许多领域带来了革命性的变化。在肿瘤放射治疗领域,人工智能已成为提高放射治疗速度、准确性和整体质量的有力工具。放射治疗工作流程涉及复杂的流程,需要具备不同技能的医疗专业人员之间进行协调。人工智能和深度学习方法通过利用成像模式、数字数据处理和先进的软件算法,为改变这一工作流程提供了前所未有的潜力。尽管具有革命性的潜力,但将人工智能无缝集成到临床工作流程中仍面临挑战。出于伦理、数据隐私和算法可解释性等方面的考虑,必须谨慎实施。此外,促进人工智能专家和放射肿瘤专家之间的跨学科合作对于充分发挥该技术的潜力也是势在必行的。本文探讨了人工智能在放射治疗四个关键领域的影响:自动分割、剂量测定和机器质量保证、自适应放射治疗以及临床结果预测。关键字人工智能 放射治疗 工作流程 准确性 癌症 机器学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergizing Expertise and Technology: The Artificial intelligence Revolution in Radiotherapy for Personalized and Precise Cancer Treatment.

Artificial intelligence (AI) has truly revolutionized many fields, including healthcare. In radiation oncology, AI has emerged as a powerful tool for improving the speed, accuracy and overall quality of radiotherapy treatments. The radiotherapy workflow involves complex processes that require coordination between healthcare professionals with diverse skills. AI and deep learning methods offer unprecedented potential to transform this workflow by leveraging imaging modalities, digital data processing and advanced software algorithms. Despite the revolutionary potential, challenges remain in seamlessly integrating AI into clinical workflows. Ethical considerations, data privacy, and algorithm interpretability necessitate cautious implementation. Additionally, fostering interdisciplinary collaboration between AI experts and radiation oncologists is imperative to harness the technology's full potential. This paper explores the impact of AI in four key areas of radiotherapy: automated segmentation, dosimetric and machine quality assurance, adaptive radiation therapy, and clinical outcome prediction. Key words: Artificial intelligence, Radiotherapy, Workflow, Accuracy, cancer ,machine-learning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The gulf journal of oncology
The gulf journal of oncology Medicine-Medicine (all)
CiteScore
0.90
自引率
0.00%
发文量
37
期刊最新文献
Assessing Mismatch Repair Expression by Immunohistochemistry in Colorectal Adenocarcinoma -Insight from a Tertiary Care Centre. Assessment of Radiation Induced Pneumonitis and Pericarditis in Patients Undergoing Breast Conservative Treatment Using Hypofractionated Simultaneous Integrated Boost Technique. Comparison of Acute Toxicities, Overall Treatment Time and Quality of Life in Head and Neck Cancer Patients Treated with IMRT and Helical Tomotherapy. Cost of Healthcare Services in Geriatric Neuro-oncology: A descriptive Analysis. Establishing and Monitoring an Effective Management of Benign Nontoxic Multinodular Goitre in Kuwait "Utilizing Two Different Dose Levels of Recombinant Human TSH in Combination with Radioactive Iodine".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1