{"title":"相空间稀疏重构的降维、精确恢复和误差估计","authors":"M. Holler , A. Schlüter , B. Wirth","doi":"10.1016/j.acha.2024.101631","DOIUrl":null,"url":null,"abstract":"<div><p>An important theme in modern inverse problems is the reconstruction of <em>time-dependent</em> data from only <em>finitely many</em> measurements. To obtain satisfactory reconstruction results in this setting it is essential to strongly exploit temporal consistency between the different measurement times. The strongest consistency can be achieved by reconstructing data directly in <em>phase space</em>, the space of positions <em>and</em> velocities. However, this space is usually too high-dimensional for feasible computations. We introduce a novel dimension reduction technique, based on projections of phase space onto lower-dimensional subspaces, which provably circumvents this curse of dimensionality: Indeed, in the exemplary framework of superresolution we prove that known exact reconstruction results stay true after dimension reduction, and we additionally prove new error estimates of reconstructions from noisy data in optimal transport metrics which are of the same quality as one would obtain in the non-dimension-reduced case.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"70 ","pages":"Article 101631"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1063520324000083/pdfft?md5=ecd67b0e5374d4297b6087dc7c3b9288&pid=1-s2.0-S1063520324000083-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Dimension reduction, exact recovery, and error estimates for sparse reconstruction in phase space\",\"authors\":\"M. Holler , A. Schlüter , B. Wirth\",\"doi\":\"10.1016/j.acha.2024.101631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An important theme in modern inverse problems is the reconstruction of <em>time-dependent</em> data from only <em>finitely many</em> measurements. To obtain satisfactory reconstruction results in this setting it is essential to strongly exploit temporal consistency between the different measurement times. The strongest consistency can be achieved by reconstructing data directly in <em>phase space</em>, the space of positions <em>and</em> velocities. However, this space is usually too high-dimensional for feasible computations. We introduce a novel dimension reduction technique, based on projections of phase space onto lower-dimensional subspaces, which provably circumvents this curse of dimensionality: Indeed, in the exemplary framework of superresolution we prove that known exact reconstruction results stay true after dimension reduction, and we additionally prove new error estimates of reconstructions from noisy data in optimal transport metrics which are of the same quality as one would obtain in the non-dimension-reduced case.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"70 \",\"pages\":\"Article 101631\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000083/pdfft?md5=ecd67b0e5374d4297b6087dc7c3b9288&pid=1-s2.0-S1063520324000083-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000083\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000083","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Dimension reduction, exact recovery, and error estimates for sparse reconstruction in phase space
An important theme in modern inverse problems is the reconstruction of time-dependent data from only finitely many measurements. To obtain satisfactory reconstruction results in this setting it is essential to strongly exploit temporal consistency between the different measurement times. The strongest consistency can be achieved by reconstructing data directly in phase space, the space of positions and velocities. However, this space is usually too high-dimensional for feasible computations. We introduce a novel dimension reduction technique, based on projections of phase space onto lower-dimensional subspaces, which provably circumvents this curse of dimensionality: Indeed, in the exemplary framework of superresolution we prove that known exact reconstruction results stay true after dimension reduction, and we additionally prove new error estimates of reconstructions from noisy data in optimal transport metrics which are of the same quality as one would obtain in the non-dimension-reduced case.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.