HFCommunity:分析拥抱脸枢纽数据的提取过程和关系数据库

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Science of Computer Programming Pub Date : 2024-01-10 DOI:10.1016/j.scico.2024.103079
Adem Ait , Javier Luis Cánovas Izquierdo , Jordi Cabot
{"title":"HFCommunity:分析拥抱脸枢纽数据的提取过程和关系数据库","authors":"Adem Ait ,&nbsp;Javier Luis Cánovas Izquierdo ,&nbsp;Jordi Cabot","doi":"10.1016/j.scico.2024.103079","DOIUrl":null,"url":null,"abstract":"<div><p>Social coding platforms such as <span>GitHub</span> or <span>GitLab</span> have become the <em>de facto</em> standard for developing Open-Source Software (OSS) projects. With the emergence of Machine Learning (ML), platforms specifically designed for hosting and developing ML-based projects have appeared, being <span>Hugging Face Hub</span> (HFH) one of the most popular ones. HFH aims at sharing datasets, pre-trained ML models and the applications built with them. With over 400 K repositories, and growing fast, HFH is becoming a promising source of empirical data on all aspects of ML project development. However, apart from the API provided by the platform, there are no easy-to-use solutions to collect the data, nor prepackaged datasets to explore the different facets of HFH. We present <span>HFCommunity</span>, an extraction process for HFH data and a relational database to facilitate an empirical analysis on the growing number of ML projects.</p></div>","PeriodicalId":49561,"journal":{"name":"Science of Computer Programming","volume":"234 ","pages":"Article 103079"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167642324000029/pdfft?md5=bb0c43422124d50d91f987a6ab598504&pid=1-s2.0-S0167642324000029-main.pdf","citationCount":"0","resultStr":"{\"title\":\"HFCommunity: An extraction process and relational database to analyze Hugging Face Hub data\",\"authors\":\"Adem Ait ,&nbsp;Javier Luis Cánovas Izquierdo ,&nbsp;Jordi Cabot\",\"doi\":\"10.1016/j.scico.2024.103079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Social coding platforms such as <span>GitHub</span> or <span>GitLab</span> have become the <em>de facto</em> standard for developing Open-Source Software (OSS) projects. With the emergence of Machine Learning (ML), platforms specifically designed for hosting and developing ML-based projects have appeared, being <span>Hugging Face Hub</span> (HFH) one of the most popular ones. HFH aims at sharing datasets, pre-trained ML models and the applications built with them. With over 400 K repositories, and growing fast, HFH is becoming a promising source of empirical data on all aspects of ML project development. However, apart from the API provided by the platform, there are no easy-to-use solutions to collect the data, nor prepackaged datasets to explore the different facets of HFH. We present <span>HFCommunity</span>, an extraction process for HFH data and a relational database to facilitate an empirical analysis on the growing number of ML projects.</p></div>\",\"PeriodicalId\":49561,\"journal\":{\"name\":\"Science of Computer Programming\",\"volume\":\"234 \",\"pages\":\"Article 103079\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167642324000029/pdfft?md5=bb0c43422124d50d91f987a6ab598504&pid=1-s2.0-S0167642324000029-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Computer Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167642324000029\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Computer Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167642324000029","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

GitHub 或 GitLab 等社交编码平台已成为开发开源软件 (OSS) 项目的事实标准。随着机器学习(ML)的出现,出现了专门用于托管和开发基于 ML 的项目的平台,Hugging Face Hub(HFH)就是其中最受欢迎的平台之一。HFH 旨在共享数据集、预训练的 ML 模型以及使用这些模型构建的应用程序。HFH 拥有超过 400 K 个存储库,并且还在快速增长,它正在成为有关 ML 项目开发各个方面的经验数据的一个有前途的来源。然而,除了该平台提供的应用程序接口(API)外,还没有易于使用的解决方案来收集数据,也没有预先打包的数据集来探索 HFH 的不同方面。我们介绍了 HFCommunity,这是一个提取 HFH 数据的流程,也是一个关系数据库,有助于对日益增多的 ML 项目进行实证分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HFCommunity: An extraction process and relational database to analyze Hugging Face Hub data

Social coding platforms such as GitHub or GitLab have become the de facto standard for developing Open-Source Software (OSS) projects. With the emergence of Machine Learning (ML), platforms specifically designed for hosting and developing ML-based projects have appeared, being Hugging Face Hub (HFH) one of the most popular ones. HFH aims at sharing datasets, pre-trained ML models and the applications built with them. With over 400 K repositories, and growing fast, HFH is becoming a promising source of empirical data on all aspects of ML project development. However, apart from the API provided by the platform, there are no easy-to-use solutions to collect the data, nor prepackaged datasets to explore the different facets of HFH. We present HFCommunity, an extraction process for HFH data and a relational database to facilitate an empirical analysis on the growing number of ML projects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of Computer Programming
Science of Computer Programming 工程技术-计算机:软件工程
CiteScore
3.80
自引率
0.00%
发文量
76
审稿时长
67 days
期刊介绍: Science of Computer Programming is dedicated to the distribution of research results in the areas of software systems development, use and maintenance, including the software aspects of hardware design. The journal has a wide scope ranging from the many facets of methodological foundations to the details of technical issues andthe aspects of industrial practice. The subjects of interest to SCP cover the entire spectrum of methods for the entire life cycle of software systems, including • Requirements, specification, design, validation, verification, coding, testing, maintenance, metrics and renovation of software; • Design, implementation and evaluation of programming languages; • Programming environments, development tools, visualisation and animation; • Management of the development process; • Human factors in software, software for social interaction, software for social computing; • Cyber physical systems, and software for the interaction between the physical and the machine; • Software aspects of infrastructure services, system administration, and network management.
期刊最新文献
Verification of forward simulations with thread-local, step-local proof obligations API comparison based on the non-functional information mined from Stack Overflow An empirical evaluation of a formal approach versus ad hoc implementations in robot behavior planning View-based axiomatic reasoning for the weak memory models PSO and SRA Verifying chip designs at RTL level
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1