基于模态和阻抗的组件的直接耦合

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL Experimental Techniques Pub Date : 2024-01-10 DOI:10.1007/s40799-023-00696-4
J. A. Seymour, P. Avitabile
{"title":"基于模态和阻抗的组件的直接耦合","authors":"J. A. Seymour,&nbsp;P. Avitabile","doi":"10.1007/s40799-023-00696-4","DOIUrl":null,"url":null,"abstract":"<div><p>Substructuring is a term used to describe the estimation of the dynamics of a coupled system assembly when only the dynamics of each uncoupled component is available. Existing approaches allow for the coupling of physical-to-physical models, physical-to-modal models, modal-to-modal models referred to as Component Mode Synthesis (CMS), and impedance-to-impedance models referred to as Frequency Based Substructuring (FBS). Often times, the component information may not be just modal data for both components or just FRF data for both components so that modal substructuring or FRF substructuring can be performed. In these cases, the component data needs to be converted from either modal data or FRF data to match the data of the other component. A method for directly coupling impedance- and modal-based components has not yet been addressed. A proposed Impedance to Modal Substructuring (IMS) approach addresses this situation by writing the equations in a form that allows the user to directly utilize modal data for one component and FRF data for the other component, offering more flexibility in coupling different component data sets. While intended to be used with experimental data, this approach may also implement analytical components. In this work, an approach was developed to allow for the direct coupling of impedance and modal models without the need for the user to convert component data type. The IMS approach derived in this work was validated using analytical and experimental data with various models.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 5","pages":"775 - 792"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Direct Coupling of Modal and Impedance Based Components\",\"authors\":\"J. A. Seymour,&nbsp;P. Avitabile\",\"doi\":\"10.1007/s40799-023-00696-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Substructuring is a term used to describe the estimation of the dynamics of a coupled system assembly when only the dynamics of each uncoupled component is available. Existing approaches allow for the coupling of physical-to-physical models, physical-to-modal models, modal-to-modal models referred to as Component Mode Synthesis (CMS), and impedance-to-impedance models referred to as Frequency Based Substructuring (FBS). Often times, the component information may not be just modal data for both components or just FRF data for both components so that modal substructuring or FRF substructuring can be performed. In these cases, the component data needs to be converted from either modal data or FRF data to match the data of the other component. A method for directly coupling impedance- and modal-based components has not yet been addressed. A proposed Impedance to Modal Substructuring (IMS) approach addresses this situation by writing the equations in a form that allows the user to directly utilize modal data for one component and FRF data for the other component, offering more flexibility in coupling different component data sets. While intended to be used with experimental data, this approach may also implement analytical components. In this work, an approach was developed to allow for the direct coupling of impedance and modal models without the need for the user to convert component data type. The IMS approach derived in this work was validated using analytical and experimental data with various models.</p></div>\",\"PeriodicalId\":553,\"journal\":{\"name\":\"Experimental Techniques\",\"volume\":\"48 5\",\"pages\":\"775 - 792\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Techniques\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40799-023-00696-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Techniques","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40799-023-00696-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

子结构是一个术语,用于描述在只能获得每个非耦合组件的动态信息时,对耦合系统组件的动态进行估算。现有的方法允许耦合物理到物理模型、物理到模态模型、模态到模态模型(称为组件模式合成(CMS))以及阻抗到阻抗模型(称为基于频率的子结构分析(FBS))。很多时候,组件信息可能不只是两个组件的模态数据或两个组件的 FRF 数据,因此无法执行模态子结构或 FRF 子结构。在这种情况下,组件数据需要从模态数据或 FRF 数据进行转换,以便与另一个组件的数据相匹配。阻抗和模态分量直接耦合的方法尚未解决。针对这种情况,我们提出了阻抗到模态子结构(IMS)方法,该方法以一种允许用户直接使用一个组件的模态数据和另一个组件的 FRF 数据的形式编写方程,为耦合不同组件数据集提供了更大的灵活性。虽然这种方法旨在用于实验数据,但也可用于分析组件。在这项工作中,我们开发了一种方法,允许阻抗和模态模型直接耦合,用户无需转换组件数据类型。这项工作中得出的 IMS 方法利用各种模型的分析和实验数据进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Direct Coupling of Modal and Impedance Based Components

Substructuring is a term used to describe the estimation of the dynamics of a coupled system assembly when only the dynamics of each uncoupled component is available. Existing approaches allow for the coupling of physical-to-physical models, physical-to-modal models, modal-to-modal models referred to as Component Mode Synthesis (CMS), and impedance-to-impedance models referred to as Frequency Based Substructuring (FBS). Often times, the component information may not be just modal data for both components or just FRF data for both components so that modal substructuring or FRF substructuring can be performed. In these cases, the component data needs to be converted from either modal data or FRF data to match the data of the other component. A method for directly coupling impedance- and modal-based components has not yet been addressed. A proposed Impedance to Modal Substructuring (IMS) approach addresses this situation by writing the equations in a form that allows the user to directly utilize modal data for one component and FRF data for the other component, offering more flexibility in coupling different component data sets. While intended to be used with experimental data, this approach may also implement analytical components. In this work, an approach was developed to allow for the direct coupling of impedance and modal models without the need for the user to convert component data type. The IMS approach derived in this work was validated using analytical and experimental data with various models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Techniques
Experimental Techniques 工程技术-材料科学:表征与测试
CiteScore
3.50
自引率
6.20%
发文量
88
审稿时长
5.2 months
期刊介绍: Experimental Techniques is a bimonthly interdisciplinary publication of the Society for Experimental Mechanics focusing on the development, application and tutorial of experimental mechanics techniques. The purpose for Experimental Techniques is to promote pedagogical, technical and practical advancements in experimental mechanics while supporting the Society''s mission and commitment to interdisciplinary application, research and development, education, and active promotion of experimental methods to: - Increase the knowledge of physical phenomena - Further the understanding of the behavior of materials, structures, and systems - Provide the necessary physical observations necessary to improve and assess new analytical and computational approaches.
期刊最新文献
On the Cover: Identification of Lightning Strike Damage Severity Using Pulse Thermography Through Integration of Thermal Data A Note of Gratitude from the Editor-in-Chief On the Cover: Study on Velocity Distribution on Cross-Section Flow of T-Shunt Reconstruction of Unsteady Lift Force Measurements Using Non-Dimensional Scaling Optimization Surface Microstructure Evolution and Mechanical Property Investigation of Inconel 718 Alloy Using Multiple Trimmings and WEDM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1