腹部非增强 CT 图像尿石自动检测系统减轻了放射科医生的负担

IF 2.9 2区 工程技术 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Digital Imaging Pub Date : 2024-01-10 DOI:10.1007/s10278-023-00946-2
Zhaoyu Xing, Zuhui Zhu, Zhenxing Jiang, Jingshi Zhao, Qin Chen, Wei Xing, Liang Pan, Yan Zeng, Aie Liu, Jiule Ding
{"title":"腹部非增强 CT 图像尿石自动检测系统减轻了放射科医生的负担","authors":"Zhaoyu Xing, Zuhui Zhu, Zhenxing Jiang, Jingshi Zhao, Qin Chen, Wei Xing, Liang Pan, Yan Zeng, Aie Liu, Jiule Ding","doi":"10.1007/s10278-023-00946-2","DOIUrl":null,"url":null,"abstract":"<p>To develop a fully automatic urinary stone detection system (kidney, ureter, and bladder) and to test it in a real clinical environment. The local institutional review board approved this retrospective single-center study that used non-enhanced abdominopelvic CT scans from patients admitted urology (uPatients) and emergency (ePatients). The uPatients were randomly divided into training and validation sets in a ratio of 3:1. We designed a cascade urinary stone map location-feature pyramid networks (USm-FPNs) and innovatively proposed a ureter distance heatmap method to estimate the ureter position on non-enhanced CT to further reduce the false positives. The performances of the system were compared using the free-response receiver operating characteristic curve and the precision-recall curve. This study included 811 uPatients and 356 ePatients. At stone level, the cascade detector USm-FPNs has the mean of false positives per scan (mFP) 1.88 with the sensitivity 0.977 in validation set, and mFP was further reduced to 1.18 with the sensitivity 0.977 after combining the ureter distance heatmap. At patient level, the sensitivity and precision were as high as 0.995 and 0.990 in validation set, respectively. In a real clinical set of ePatients (27.5% of patients contain stones), the mFP was 1.31 with as high as sensitivity 0.977, and the diagnostic time reduced by &gt; 20% with the system help. A fully automatic detection system for entire urinary stones on non-enhanced CT scans was proposed and reduces obviously the burden on junior radiologists without compromising sensitivity in real emergency data.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"69 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Urinary Stone Detection System for Abdominal Non-Enhanced CT Images Reduces the Burden on Radiologists\",\"authors\":\"Zhaoyu Xing, Zuhui Zhu, Zhenxing Jiang, Jingshi Zhao, Qin Chen, Wei Xing, Liang Pan, Yan Zeng, Aie Liu, Jiule Ding\",\"doi\":\"10.1007/s10278-023-00946-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To develop a fully automatic urinary stone detection system (kidney, ureter, and bladder) and to test it in a real clinical environment. The local institutional review board approved this retrospective single-center study that used non-enhanced abdominopelvic CT scans from patients admitted urology (uPatients) and emergency (ePatients). The uPatients were randomly divided into training and validation sets in a ratio of 3:1. We designed a cascade urinary stone map location-feature pyramid networks (USm-FPNs) and innovatively proposed a ureter distance heatmap method to estimate the ureter position on non-enhanced CT to further reduce the false positives. The performances of the system were compared using the free-response receiver operating characteristic curve and the precision-recall curve. This study included 811 uPatients and 356 ePatients. At stone level, the cascade detector USm-FPNs has the mean of false positives per scan (mFP) 1.88 with the sensitivity 0.977 in validation set, and mFP was further reduced to 1.18 with the sensitivity 0.977 after combining the ureter distance heatmap. At patient level, the sensitivity and precision were as high as 0.995 and 0.990 in validation set, respectively. In a real clinical set of ePatients (27.5% of patients contain stones), the mFP was 1.31 with as high as sensitivity 0.977, and the diagnostic time reduced by &gt; 20% with the system help. A fully automatic detection system for entire urinary stones on non-enhanced CT scans was proposed and reduces obviously the burden on junior radiologists without compromising sensitivity in real emergency data.</p>\",\"PeriodicalId\":50214,\"journal\":{\"name\":\"Journal of Digital Imaging\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Digital Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-023-00946-2\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-023-00946-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

开发全自动尿石检测系统(肾脏、输尿管和膀胱),并在真实临床环境中进行测试。当地机构审查委员会批准了这项回顾性单中心研究,该研究使用了泌尿科(uPatients)和急诊(ePatients)患者的非增强腹盆腔 CT 扫描。泌尿科患者按 3:1 的比例随机分为训练集和验证集。我们设计了一个级联泌尿系结石图位置-特征金字塔网络(USm-FPNs),并创新性地提出了一种输尿管距离热图方法来估计非增强 CT 上的输尿管位置,以进一步减少假阳性。利用自由响应接收器工作特征曲线和精确度-召回曲线比较了系统的性能。这项研究包括 811 名住院患者和 356 名电子患者。在结石层面,级联检测器USm-FPNs每次扫描的平均误报率(mFP)为1.88,灵敏度为0.977;结合输尿管距离热图后,误报率进一步降至1.18,灵敏度为0.977。在患者层面,验证集的灵敏度和精确度分别高达 0.995 和 0.990。在一组真实的临床电子病人(27.5% 的病人含有结石)中,mFP 为 1.31,灵敏度高达 0.977,在系统的帮助下,诊断时间缩短了 20%。我们提出了一种在非增强型 CT 扫描中全自动检测泌尿系统结石的系统,在不影响真实急诊数据灵敏度的情况下,明显减轻了初级放射医师的负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Urinary Stone Detection System for Abdominal Non-Enhanced CT Images Reduces the Burden on Radiologists

To develop a fully automatic urinary stone detection system (kidney, ureter, and bladder) and to test it in a real clinical environment. The local institutional review board approved this retrospective single-center study that used non-enhanced abdominopelvic CT scans from patients admitted urology (uPatients) and emergency (ePatients). The uPatients were randomly divided into training and validation sets in a ratio of 3:1. We designed a cascade urinary stone map location-feature pyramid networks (USm-FPNs) and innovatively proposed a ureter distance heatmap method to estimate the ureter position on non-enhanced CT to further reduce the false positives. The performances of the system were compared using the free-response receiver operating characteristic curve and the precision-recall curve. This study included 811 uPatients and 356 ePatients. At stone level, the cascade detector USm-FPNs has the mean of false positives per scan (mFP) 1.88 with the sensitivity 0.977 in validation set, and mFP was further reduced to 1.18 with the sensitivity 0.977 after combining the ureter distance heatmap. At patient level, the sensitivity and precision were as high as 0.995 and 0.990 in validation set, respectively. In a real clinical set of ePatients (27.5% of patients contain stones), the mFP was 1.31 with as high as sensitivity 0.977, and the diagnostic time reduced by > 20% with the system help. A fully automatic detection system for entire urinary stones on non-enhanced CT scans was proposed and reduces obviously the burden on junior radiologists without compromising sensitivity in real emergency data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Digital Imaging
Journal of Digital Imaging 医学-核医学
CiteScore
7.50
自引率
6.80%
发文量
192
审稿时长
6-12 weeks
期刊介绍: The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals. Suggested Topics PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.
期刊最新文献
Intra-Individual Reproducibility of Automated Abdominal Organ Segmentation—Performance of TotalSegmentator Compared to Human Readers and an Independent nnU-Net Model Teleradiology-Based Referrals for Patients with Gastroenterological Diseases Between Tertiary and Regional Hospitals: A Hospital-to-Hospital Approach Vital Characteristics Cellular Neural Network (VCeNN) for Melanoma Lesion Segmentation: A Biologically Inspired Deep Learning Approach Septic Arthritis Modeling Using Sonographic Fusion with Attention and Selective Transformation: a Preliminary Study Assessment of Age-Related Differences in Lower Leg Muscles Quality Using Radiomic Features of Magnetic Resonance Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1