{"title":"腹部非增强 CT 图像尿石自动检测系统减轻了放射科医生的负担","authors":"Zhaoyu Xing, Zuhui Zhu, Zhenxing Jiang, Jingshi Zhao, Qin Chen, Wei Xing, Liang Pan, Yan Zeng, Aie Liu, Jiule Ding","doi":"10.1007/s10278-023-00946-2","DOIUrl":null,"url":null,"abstract":"<p>To develop a fully automatic urinary stone detection system (kidney, ureter, and bladder) and to test it in a real clinical environment. The local institutional review board approved this retrospective single-center study that used non-enhanced abdominopelvic CT scans from patients admitted urology (uPatients) and emergency (ePatients). The uPatients were randomly divided into training and validation sets in a ratio of 3:1. We designed a cascade urinary stone map location-feature pyramid networks (USm-FPNs) and innovatively proposed a ureter distance heatmap method to estimate the ureter position on non-enhanced CT to further reduce the false positives. The performances of the system were compared using the free-response receiver operating characteristic curve and the precision-recall curve. This study included 811 uPatients and 356 ePatients. At stone level, the cascade detector USm-FPNs has the mean of false positives per scan (mFP) 1.88 with the sensitivity 0.977 in validation set, and mFP was further reduced to 1.18 with the sensitivity 0.977 after combining the ureter distance heatmap. At patient level, the sensitivity and precision were as high as 0.995 and 0.990 in validation set, respectively. In a real clinical set of ePatients (27.5% of patients contain stones), the mFP was 1.31 with as high as sensitivity 0.977, and the diagnostic time reduced by > 20% with the system help. A fully automatic detection system for entire urinary stones on non-enhanced CT scans was proposed and reduces obviously the burden on junior radiologists without compromising sensitivity in real emergency data.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"69 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Urinary Stone Detection System for Abdominal Non-Enhanced CT Images Reduces the Burden on Radiologists\",\"authors\":\"Zhaoyu Xing, Zuhui Zhu, Zhenxing Jiang, Jingshi Zhao, Qin Chen, Wei Xing, Liang Pan, Yan Zeng, Aie Liu, Jiule Ding\",\"doi\":\"10.1007/s10278-023-00946-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To develop a fully automatic urinary stone detection system (kidney, ureter, and bladder) and to test it in a real clinical environment. The local institutional review board approved this retrospective single-center study that used non-enhanced abdominopelvic CT scans from patients admitted urology (uPatients) and emergency (ePatients). The uPatients were randomly divided into training and validation sets in a ratio of 3:1. We designed a cascade urinary stone map location-feature pyramid networks (USm-FPNs) and innovatively proposed a ureter distance heatmap method to estimate the ureter position on non-enhanced CT to further reduce the false positives. The performances of the system were compared using the free-response receiver operating characteristic curve and the precision-recall curve. This study included 811 uPatients and 356 ePatients. At stone level, the cascade detector USm-FPNs has the mean of false positives per scan (mFP) 1.88 with the sensitivity 0.977 in validation set, and mFP was further reduced to 1.18 with the sensitivity 0.977 after combining the ureter distance heatmap. At patient level, the sensitivity and precision were as high as 0.995 and 0.990 in validation set, respectively. In a real clinical set of ePatients (27.5% of patients contain stones), the mFP was 1.31 with as high as sensitivity 0.977, and the diagnostic time reduced by > 20% with the system help. A fully automatic detection system for entire urinary stones on non-enhanced CT scans was proposed and reduces obviously the burden on junior radiologists without compromising sensitivity in real emergency data.</p>\",\"PeriodicalId\":50214,\"journal\":{\"name\":\"Journal of Digital Imaging\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Digital Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-023-00946-2\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-023-00946-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Automatic Urinary Stone Detection System for Abdominal Non-Enhanced CT Images Reduces the Burden on Radiologists
To develop a fully automatic urinary stone detection system (kidney, ureter, and bladder) and to test it in a real clinical environment. The local institutional review board approved this retrospective single-center study that used non-enhanced abdominopelvic CT scans from patients admitted urology (uPatients) and emergency (ePatients). The uPatients were randomly divided into training and validation sets in a ratio of 3:1. We designed a cascade urinary stone map location-feature pyramid networks (USm-FPNs) and innovatively proposed a ureter distance heatmap method to estimate the ureter position on non-enhanced CT to further reduce the false positives. The performances of the system were compared using the free-response receiver operating characteristic curve and the precision-recall curve. This study included 811 uPatients and 356 ePatients. At stone level, the cascade detector USm-FPNs has the mean of false positives per scan (mFP) 1.88 with the sensitivity 0.977 in validation set, and mFP was further reduced to 1.18 with the sensitivity 0.977 after combining the ureter distance heatmap. At patient level, the sensitivity and precision were as high as 0.995 and 0.990 in validation set, respectively. In a real clinical set of ePatients (27.5% of patients contain stones), the mFP was 1.31 with as high as sensitivity 0.977, and the diagnostic time reduced by > 20% with the system help. A fully automatic detection system for entire urinary stones on non-enhanced CT scans was proposed and reduces obviously the burden on junior radiologists without compromising sensitivity in real emergency data.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.