新型铁碳耦合原电池驱动的强化反硝化作用:化学和混养反硝化作用

IF 13.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Biochar Pub Date : 2024-01-10 DOI:10.1007/s42773-023-00274-2
Ruofan Wu, Paramsothy Jeyakumar, Nanthi Bolan, Xu Zhai, Hailong Wang, Minghui Pan, Jiapan Lian, Liping Cheng, Jiangzhou Li, Minghei Hou, Yonghe Cui, Xiaoe Yang, Kuai Dai
{"title":"新型铁碳耦合原电池驱动的强化反硝化作用:化学和混养反硝化作用","authors":"Ruofan Wu, Paramsothy Jeyakumar, Nanthi Bolan, Xu Zhai, Hailong Wang, Minghui Pan, Jiapan Lian, Liping Cheng, Jiangzhou Li, Minghei Hou, Yonghe Cui, Xiaoe Yang, Kuai Dai","doi":"10.1007/s42773-023-00274-2","DOIUrl":null,"url":null,"abstract":"<p>Iron-carbon micro-electrolysis system is a promising method for promoting electron transfer in nitrate removal. However, many traditional approaches involving simple physical mixing inevitably suffered from the confined iron-carbon contact area and short validity period, leading to the overuse of iron. Here, a ceramsite-loaded microscale zero-valent iron (mZVI) and acidified carbon (AC) coupled-galvanic cell (CMC) was designed to support chemical, autotrophic and heterotrophic denitrification. Long-term experiments were conducted to monitor the nitrogen removal performance of denitrification reactors filled with CMC and thus optimized the denitrification performance by improving fabrication parameters and various operating conditions. The denitrification contributions test showed that the chemical denitrification pathway contributed most to nitrate removal (57.3%), followed by autotrophic (24.6%) and heterotrophic denitrification pathways (18.1%). The microbial analysis confirmed the significant aggregation of related denitrifying bacteria in the reactors, while AC promoted the expression of relevant nitrogen metabolism genes because of accelerated uptake and utilization of iron complexes. Meanwhile, the electrochemical analysis revealed a significantly improved electron transfer capacity of AC compared to pristine carbon. Overall, our study demonstrated the application of a novel mZVI-AC coupled material for effective nitrate removal and revealed the potential impact of CMC in the multipathway denitrification process.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"122 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced denitrification driven by a novel iron-carbon coupled primary cell: chemical and mixotrophic denitrification\",\"authors\":\"Ruofan Wu, Paramsothy Jeyakumar, Nanthi Bolan, Xu Zhai, Hailong Wang, Minghui Pan, Jiapan Lian, Liping Cheng, Jiangzhou Li, Minghei Hou, Yonghe Cui, Xiaoe Yang, Kuai Dai\",\"doi\":\"10.1007/s42773-023-00274-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Iron-carbon micro-electrolysis system is a promising method for promoting electron transfer in nitrate removal. However, many traditional approaches involving simple physical mixing inevitably suffered from the confined iron-carbon contact area and short validity period, leading to the overuse of iron. Here, a ceramsite-loaded microscale zero-valent iron (mZVI) and acidified carbon (AC) coupled-galvanic cell (CMC) was designed to support chemical, autotrophic and heterotrophic denitrification. Long-term experiments were conducted to monitor the nitrogen removal performance of denitrification reactors filled with CMC and thus optimized the denitrification performance by improving fabrication parameters and various operating conditions. The denitrification contributions test showed that the chemical denitrification pathway contributed most to nitrate removal (57.3%), followed by autotrophic (24.6%) and heterotrophic denitrification pathways (18.1%). The microbial analysis confirmed the significant aggregation of related denitrifying bacteria in the reactors, while AC promoted the expression of relevant nitrogen metabolism genes because of accelerated uptake and utilization of iron complexes. Meanwhile, the electrochemical analysis revealed a significantly improved electron transfer capacity of AC compared to pristine carbon. Overall, our study demonstrated the application of a novel mZVI-AC coupled material for effective nitrate removal and revealed the potential impact of CMC in the multipathway denitrification process.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":8789,\"journal\":{\"name\":\"Biochar\",\"volume\":\"122 1\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochar\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s42773-023-00274-2\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochar","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42773-023-00274-2","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

铁碳微电解系统是一种在硝酸盐去除过程中促进电子转移的有效方法。然而,许多涉及简单物理混合的传统方法不可避免地受到铁碳接触面积有限和有效期短的影响,导致铁的过度使用。在此,我们设计了一种陶瓷负载的微尺度零价铁(mZVI)和酸化碳(AC)耦合电镀池(CMC),以支持化学、自养和异养反硝化作用。通过长期实验监测了填充 CMC 的反硝化反应器的脱氮性能,并通过改进制造参数和各种操作条件优化了反硝化性能。反硝化贡献测试表明,化学反硝化途径对硝酸盐去除的贡献最大(57.3%),其次是自养反硝化途径(24.6%)和异养反硝化途径(18.1%)。微生物分析证实,相关反硝化细菌在反应器中大量聚集,而交流电由于加速了铁络合物的吸收和利用,促进了相关氮代谢基因的表达。同时,电化学分析表明,与原始碳相比,AC 的电子传递能力明显提高。总之,我们的研究证明了新型 mZVI-AC 耦合材料在有效去除硝酸盐方面的应用,并揭示了 CMC 在多途径脱氮过程中的潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced denitrification driven by a novel iron-carbon coupled primary cell: chemical and mixotrophic denitrification

Iron-carbon micro-electrolysis system is a promising method for promoting electron transfer in nitrate removal. However, many traditional approaches involving simple physical mixing inevitably suffered from the confined iron-carbon contact area and short validity period, leading to the overuse of iron. Here, a ceramsite-loaded microscale zero-valent iron (mZVI) and acidified carbon (AC) coupled-galvanic cell (CMC) was designed to support chemical, autotrophic and heterotrophic denitrification. Long-term experiments were conducted to monitor the nitrogen removal performance of denitrification reactors filled with CMC and thus optimized the denitrification performance by improving fabrication parameters and various operating conditions. The denitrification contributions test showed that the chemical denitrification pathway contributed most to nitrate removal (57.3%), followed by autotrophic (24.6%) and heterotrophic denitrification pathways (18.1%). The microbial analysis confirmed the significant aggregation of related denitrifying bacteria in the reactors, while AC promoted the expression of relevant nitrogen metabolism genes because of accelerated uptake and utilization of iron complexes. Meanwhile, the electrochemical analysis revealed a significantly improved electron transfer capacity of AC compared to pristine carbon. Overall, our study demonstrated the application of a novel mZVI-AC coupled material for effective nitrate removal and revealed the potential impact of CMC in the multipathway denitrification process.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochar
Biochar Multiple-
CiteScore
18.60
自引率
10.20%
发文量
61
期刊介绍: Biochar stands as a distinguished academic journal delving into multidisciplinary subjects such as agronomy, environmental science, and materials science. Its pages showcase innovative articles spanning the preparation and processing of biochar, exploring its diverse applications, including but not limited to bioenergy production, biochar-based materials for environmental use, soil enhancement, climate change mitigation, contaminated-environment remediation, water purification, new analytical techniques, life cycle assessment, and crucially, rural and regional development. Biochar publishes various article types, including reviews, original research, rapid reports, commentaries, and perspectives, with the overarching goal of reporting significant research achievements, critical reviews fostering a deeper mechanistic understanding of the science, and facilitating academic exchange to drive scientific and technological development.
期刊最新文献
Advancing modified biochar for sustainable agriculture: a comprehensive review on characterization, analysis, and soil performance. Analyzing the trends and hotspots of biochar’s applications in agriculture, environment, and energy: a bibliometrics study for 2022 and 2023 Oyster shell facilitates the green production of nitrogen-doped porous biochar from macroalgae: a case study for removing atrazine from water Novel utilization exploration for the dephosphorization waste of Ca–modified biochar: enhanced removal of heavy metal ions from water Plant performance and soil–plant carbon relationship response to different biochar types
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1