{"title":"通过插入 IRxMn1-xorPtxMn1-x 层提高 W-Co20Fe60B20 多层中的自旋轨道转矩效率","authors":"Qingtao Xia, Junda Qu, Tianren Luo, Dandan Zhang, Jin Cui, Houyi Cheng, Kewen Shi, Huaiwen Yang, Xueying Zhang, Qiang Li, Sylvain Eimer, Cong Wang, Dapeng Zhu, Weisheng Zhao","doi":"10.1103/physrevapplied.21.014016","DOIUrl":null,"url":null,"abstract":"Spin-orbit torque (SOT) has great potential application for developing next-generation magnetic random-access memory (MRAM). For efficient utilization of the SOT MRAM, most efforts have been focused on reducing power consumption by improving the SOT efficiency. Here, we report that inserting an ultrathin <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ir</mi><mi>x</mi></msub><msub><mi>Mn</mi><mrow><mn>1</mn><mtext>−</mtext><mi>x</mi></mrow></msub></math> (or <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Pt</mi><mi>x</mi></msub><msub><mi>Mn</mi><mrow><mn>1</mn><mtext>−</mtext><mi>x</mi></mrow></msub></math>) layer at the heavy-metal–ferromagnet interface is an effective strategy to increase the SOT efficiency. By performing spin-torque ferromagnetic magnetic resonance and second-harmonic Hall measurements, we found that the absolute values of the charge-to-spin conversion efficiency increase from 0.09 for annealed W-<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Co</mi><mn>20</mn></msub><msub><mi>Fe</mi><mn>60</mn></msub><msub><mrow><mi mathvariant=\"normal\">B</mi></mrow><mn>20</mn></msub></math> (CFB) sample to 0.15 for annealed <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"normal\">W</mi></mrow><mstyle displaystyle=\"false\" scriptlevel=\"0\"><mtext>−</mtext></mstyle><msub><mi>Ir</mi><mi>x</mi></msub><msub><mi>Mn</mi><mrow><mn>1</mn><mstyle displaystyle=\"false\" scriptlevel=\"0\"><mtext>−</mtext></mstyle><mi>x</mi></mrow></msub></math>-CFB sample. The enhancement of the SOT efficiency can be attributed to the reduction of interfacial spin-memory loss at the annealed <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">W</mi></mrow></mrow><mstyle displaystyle=\"false\" scriptlevel=\"0\"><mtext>−</mtext></mstyle><msub><mi>Ir</mi><mi>x</mi></msub><msub><mi>Mn</mi><mrow><mn>1</mn><mtext>−</mtext><mi>x</mi></mrow></msub></math> (or <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Pt</mi><mi>x</mi></msub><msub><mi>Mn</mi><mrow><mn>1</mn><mtext>−</mtext><mi>x</mi></mrow></msub><mo stretchy=\"false\">)</mo><mstyle displaystyle=\"false\" scriptlevel=\"0\"><mtext>−</mtext></mstyle><mi>CFB</mi></math> samples. Moreover, current-driven magnetization switching with a reduced critical current density has been achieved in the annealed <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">W</mi></mrow></mrow><mstyle displaystyle=\"false\" scriptlevel=\"0\"><mtext>−</mtext></mstyle><msub><mi>Ir</mi><mi>x</mi></msub><msub><mi>Mn</mi><mrow><mn>1</mn><mtext>−</mtext><mi>x</mi></mrow></msub><mstyle displaystyle=\"false\" scriptlevel=\"0\"><mtext>−</mtext></mstyle><mi>CFB</mi></math> samples. This study highlights the significant roles of the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ir</mi><mi>x</mi></msub><msub><mi>Mn</mi><mrow><mn>1</mn><mtext>−</mtext><mi>x</mi></mrow></msub></math> (or <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Pt</mi><mi>x</mi></msub><msub><mi>Mn</mi><mrow><mn>1</mn><mtext>−</mtext><mi>x</mi></mrow></msub></math>) insertion layer on improving the SOT efficiency and provides a strategy to improve the SOT efficiency through nanoengineering of the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Ir</mi><mi>x</mi></msub><msub><mi>Mn</mi><mrow><mn>1</mn><mtext>−</mtext><mi>x</mi></mrow></msub></math> (or <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>Pt</mi><mi>x</mi></msub><msub><mi>Mn</mi><mrow><mn>1</mn><mtext>−</mtext><mi>x</mi></mrow></msub></math>) insertion layer for energy-efficient SOT devices.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"54 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Spin-Orbit-Torque Efficiency inW−Co20Fe60B20Multilayers by Insertion of anIrxMn1−xorPtxMn1−xLayer\",\"authors\":\"Qingtao Xia, Junda Qu, Tianren Luo, Dandan Zhang, Jin Cui, Houyi Cheng, Kewen Shi, Huaiwen Yang, Xueying Zhang, Qiang Li, Sylvain Eimer, Cong Wang, Dapeng Zhu, Weisheng Zhao\",\"doi\":\"10.1103/physrevapplied.21.014016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spin-orbit torque (SOT) has great potential application for developing next-generation magnetic random-access memory (MRAM). For efficient utilization of the SOT MRAM, most efforts have been focused on reducing power consumption by improving the SOT efficiency. Here, we report that inserting an ultrathin <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Ir</mi><mi>x</mi></msub><msub><mi>Mn</mi><mrow><mn>1</mn><mtext>−</mtext><mi>x</mi></mrow></msub></math> (or <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Pt</mi><mi>x</mi></msub><msub><mi>Mn</mi><mrow><mn>1</mn><mtext>−</mtext><mi>x</mi></mrow></msub></math>) layer at the heavy-metal–ferromagnet interface is an effective strategy to increase the SOT efficiency. By performing spin-torque ferromagnetic magnetic resonance and second-harmonic Hall measurements, we found that the absolute values of the charge-to-spin conversion efficiency increase from 0.09 for annealed W-<math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Co</mi><mn>20</mn></msub><msub><mi>Fe</mi><mn>60</mn></msub><msub><mrow><mi mathvariant=\\\"normal\\\">B</mi></mrow><mn>20</mn></msub></math> (CFB) sample to 0.15 for annealed <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"normal\\\">W</mi></mrow><mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"><mtext>−</mtext></mstyle><msub><mi>Ir</mi><mi>x</mi></msub><msub><mi>Mn</mi><mrow><mn>1</mn><mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"><mtext>−</mtext></mstyle><mi>x</mi></mrow></msub></math>-CFB sample. The enhancement of the SOT efficiency can be attributed to the reduction of interfacial spin-memory loss at the annealed <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mi mathvariant=\\\"normal\\\">W</mi></mrow></mrow><mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"><mtext>−</mtext></mstyle><msub><mi>Ir</mi><mi>x</mi></msub><msub><mi>Mn</mi><mrow><mn>1</mn><mtext>−</mtext><mi>x</mi></mrow></msub></math> (or <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Pt</mi><mi>x</mi></msub><msub><mi>Mn</mi><mrow><mn>1</mn><mtext>−</mtext><mi>x</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo><mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"><mtext>−</mtext></mstyle><mi>CFB</mi></math> samples. Moreover, current-driven magnetization switching with a reduced critical current density has been achieved in the annealed <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mi mathvariant=\\\"normal\\\">W</mi></mrow></mrow><mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"><mtext>−</mtext></mstyle><msub><mi>Ir</mi><mi>x</mi></msub><msub><mi>Mn</mi><mrow><mn>1</mn><mtext>−</mtext><mi>x</mi></mrow></msub><mstyle displaystyle=\\\"false\\\" scriptlevel=\\\"0\\\"><mtext>−</mtext></mstyle><mi>CFB</mi></math> samples. This study highlights the significant roles of the <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Ir</mi><mi>x</mi></msub><msub><mi>Mn</mi><mrow><mn>1</mn><mtext>−</mtext><mi>x</mi></mrow></msub></math> (or <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Pt</mi><mi>x</mi></msub><msub><mi>Mn</mi><mrow><mn>1</mn><mtext>−</mtext><mi>x</mi></mrow></msub></math>) insertion layer on improving the SOT efficiency and provides a strategy to improve the SOT efficiency through nanoengineering of the <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Ir</mi><mi>x</mi></msub><msub><mi>Mn</mi><mrow><mn>1</mn><mtext>−</mtext><mi>x</mi></mrow></msub></math> (or <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>Pt</mi><mi>x</mi></msub><msub><mi>Mn</mi><mrow><mn>1</mn><mtext>−</mtext><mi>x</mi></mrow></msub></math>) insertion layer for energy-efficient SOT devices.\",\"PeriodicalId\":20109,\"journal\":{\"name\":\"Physical Review Applied\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Applied\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.21.014016\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.21.014016","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
自旋轨道力矩(SOT)在开发新一代磁性随机存取存储器(MRAM)方面具有巨大的应用潜力。为了有效利用 SOT MRAM,大多数人都致力于通过提高 SOT 效率来降低功耗。在此,我们报告了在重金属-铁磁体界面插入超薄 IrxMn1-x(或 PtxMn1-x)层是提高 SOT 效率的有效策略。通过自旋扭矩铁磁共振和二次谐波霍尔测量,我们发现电荷-自旋转换效率的绝对值从退火 W-Co20Fe60B20 (CFB) 样品的 0.09 提高到退火 W-IrxMn1-x-CFB 样品的 0.15。SOT 效率的提高可归因于退火 W-IrxMn1-x(或 PtxMn1-x)-CFB 样品界面自旋记忆损失的减少。此外,在退火的 W-IrxMn1-x-CFB 样品中还实现了临界电流密度降低的电流驱动磁化切换。这项研究强调了 IrxMn1-x(或 PtxMn1-x)插入层对提高 SOT 效率的重要作用,并提供了一种通过对 IrxMn1-x(或 PtxMn1-x)插入层进行纳米工程来提高 SOT 效率的策略,从而实现高能效 SOT 器件。
Enhanced Spin-Orbit-Torque Efficiency inW−Co20Fe60B20Multilayers by Insertion of anIrxMn1−xorPtxMn1−xLayer
Spin-orbit torque (SOT) has great potential application for developing next-generation magnetic random-access memory (MRAM). For efficient utilization of the SOT MRAM, most efforts have been focused on reducing power consumption by improving the SOT efficiency. Here, we report that inserting an ultrathin (or ) layer at the heavy-metal–ferromagnet interface is an effective strategy to increase the SOT efficiency. By performing spin-torque ferromagnetic magnetic resonance and second-harmonic Hall measurements, we found that the absolute values of the charge-to-spin conversion efficiency increase from 0.09 for annealed W- (CFB) sample to 0.15 for annealed -CFB sample. The enhancement of the SOT efficiency can be attributed to the reduction of interfacial spin-memory loss at the annealed (or samples. Moreover, current-driven magnetization switching with a reduced critical current density has been achieved in the annealed samples. This study highlights the significant roles of the (or ) insertion layer on improving the SOT efficiency and provides a strategy to improve the SOT efficiency through nanoengineering of the (or ) insertion layer for energy-efficient SOT devices.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.