{"title":"BaTiO3 陶瓷挠电响应的晶粒尺寸效应","authors":"Xu Yang, Baoju Xia, Xiongxin Guo, Yagang Qi, Zhen Wang, Zhenxiao Fu, Yu Chen, Ruzhong Zuo, Baojin Chu","doi":"10.1063/5.0186230","DOIUrl":null,"url":null,"abstract":"Size effect is a fundamental phenomenon in ferroelectric materials and grain size dependence of the dielectric and piezoelectric properties of BaTiO3 (BTO) ceramics has been observed. However, the dependence of flexoelectric response on grain size has not been reported, thus far. In this work, BTO ceramics with grain sizes ranging from 0.59 to 8.90 μm were prepared by a two-step sintering method. We found that with increasing grain size, the flexoelectric coefficient of BTO ceramics increases from less than 20 μC/m (grain size 0.59–0.69 μm) to more than 300 μC/m (grain size 8.90 μm), but the grain size dependence of the flexoelectric response is different from that of the dielectric and piezoelectric properties. Observation by piezoresponse force microscopy reveals that the surface regions of BTO ceramics are spontaneously polarized. Strong inhomogeneous strain is measured by grazing incidence x-ray diffraction and the resultant flexoelectric effect is enough to polarize the surface regions. Fitting of the flexoelectric data indicates that the grain size effect of the flexoelectric response can be well explained by the polarized surface layer mechanism.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"51 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grain size effect of the flexoelectric response in BaTiO3 ceramics\",\"authors\":\"Xu Yang, Baoju Xia, Xiongxin Guo, Yagang Qi, Zhen Wang, Zhenxiao Fu, Yu Chen, Ruzhong Zuo, Baojin Chu\",\"doi\":\"10.1063/5.0186230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Size effect is a fundamental phenomenon in ferroelectric materials and grain size dependence of the dielectric and piezoelectric properties of BaTiO3 (BTO) ceramics has been observed. However, the dependence of flexoelectric response on grain size has not been reported, thus far. In this work, BTO ceramics with grain sizes ranging from 0.59 to 8.90 μm were prepared by a two-step sintering method. We found that with increasing grain size, the flexoelectric coefficient of BTO ceramics increases from less than 20 μC/m (grain size 0.59–0.69 μm) to more than 300 μC/m (grain size 8.90 μm), but the grain size dependence of the flexoelectric response is different from that of the dielectric and piezoelectric properties. Observation by piezoresponse force microscopy reveals that the surface regions of BTO ceramics are spontaneously polarized. Strong inhomogeneous strain is measured by grazing incidence x-ray diffraction and the resultant flexoelectric effect is enough to polarize the surface regions. Fitting of the flexoelectric data indicates that the grain size effect of the flexoelectric response can be well explained by the polarized surface layer mechanism.\",\"PeriodicalId\":15088,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0186230\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0186230","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Grain size effect of the flexoelectric response in BaTiO3 ceramics
Size effect is a fundamental phenomenon in ferroelectric materials and grain size dependence of the dielectric and piezoelectric properties of BaTiO3 (BTO) ceramics has been observed. However, the dependence of flexoelectric response on grain size has not been reported, thus far. In this work, BTO ceramics with grain sizes ranging from 0.59 to 8.90 μm were prepared by a two-step sintering method. We found that with increasing grain size, the flexoelectric coefficient of BTO ceramics increases from less than 20 μC/m (grain size 0.59–0.69 μm) to more than 300 μC/m (grain size 8.90 μm), but the grain size dependence of the flexoelectric response is different from that of the dielectric and piezoelectric properties. Observation by piezoresponse force microscopy reveals that the surface regions of BTO ceramics are spontaneously polarized. Strong inhomogeneous strain is measured by grazing incidence x-ray diffraction and the resultant flexoelectric effect is enough to polarize the surface regions. Fitting of the flexoelectric data indicates that the grain size effect of the flexoelectric response can be well explained by the polarized surface layer mechanism.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces