{"title":"制度切换在非线性双扩散(D-D)模型中的应用","authors":"Amit K. Chattopadhyay, Elias C. Aifantis","doi":"10.1063/5.0188904","DOIUrl":null,"url":null,"abstract":"The linear double-diffusivity (D-D) model of Aifantis, comprising two coupled Fick-type partial differential equations and a mass exchange term connecting the diffusivities, is a paradigm in modeling mass transport in inhomogeneous media, e.g., fissures or fractures. Uncoupling of these equations led to a higher order partial differential equation that reproduced the non-classical transport terms, analyzed independently through Barenblatt’s pseudoparabolic equation and the Cahn–Hilliard spinodal decomposition equation. In the present article, we study transport in a nonlinearly coupled D-D model and determine the regime-switching of the associated diffusive processes using a revised formulation of the celebrated Lux method that combines forward Fourier transform with a Laplace transform followed by an Inverse Fourier transform of the governing reaction–diffusion (R–D) equations. This new formulation has key application possibilities in a wide range of non-equilibrium biological and financial systems by approximating closed-form analytical solutions of nonlinear models.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"110 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of regime-switching in the nonlinear double-diffusivity (D-D) model\",\"authors\":\"Amit K. Chattopadhyay, Elias C. Aifantis\",\"doi\":\"10.1063/5.0188904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The linear double-diffusivity (D-D) model of Aifantis, comprising two coupled Fick-type partial differential equations and a mass exchange term connecting the diffusivities, is a paradigm in modeling mass transport in inhomogeneous media, e.g., fissures or fractures. Uncoupling of these equations led to a higher order partial differential equation that reproduced the non-classical transport terms, analyzed independently through Barenblatt’s pseudoparabolic equation and the Cahn–Hilliard spinodal decomposition equation. In the present article, we study transport in a nonlinearly coupled D-D model and determine the regime-switching of the associated diffusive processes using a revised formulation of the celebrated Lux method that combines forward Fourier transform with a Laplace transform followed by an Inverse Fourier transform of the governing reaction–diffusion (R–D) equations. This new formulation has key application possibilities in a wide range of non-equilibrium biological and financial systems by approximating closed-form analytical solutions of nonlinear models.\",\"PeriodicalId\":15088,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0188904\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0188904","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Applications of regime-switching in the nonlinear double-diffusivity (D-D) model
The linear double-diffusivity (D-D) model of Aifantis, comprising two coupled Fick-type partial differential equations and a mass exchange term connecting the diffusivities, is a paradigm in modeling mass transport in inhomogeneous media, e.g., fissures or fractures. Uncoupling of these equations led to a higher order partial differential equation that reproduced the non-classical transport terms, analyzed independently through Barenblatt’s pseudoparabolic equation and the Cahn–Hilliard spinodal decomposition equation. In the present article, we study transport in a nonlinearly coupled D-D model and determine the regime-switching of the associated diffusive processes using a revised formulation of the celebrated Lux method that combines forward Fourier transform with a Laplace transform followed by an Inverse Fourier transform of the governing reaction–diffusion (R–D) equations. This new formulation has key application possibilities in a wide range of non-equilibrium biological and financial systems by approximating closed-form analytical solutions of nonlinear models.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces