Jae-An Park, DaEl Kim, Su Yang, Ju-Hee Kang, Jo-Eun Kim, Kyung-Hoe Huh, Sam-Sun Lee, Won-Jin Yi, Min-Suk Heo
{"title":"利用深度监督多尺度三维网络自动检测牙科锥束 CT 图像中的后上齿槽动脉。","authors":"Jae-An Park, DaEl Kim, Su Yang, Ju-Hee Kang, Jo-Eun Kim, Kyung-Hoe Huh, Sam-Sun Lee, Won-Jin Yi, Min-Suk Heo","doi":"10.1093/dmfr/twad002","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aimed to develop a robust and accurate deep learning network for detecting the posterior superior alveolar artery (PSAA) in dental cone-beam CT (CBCT) images, focusing on the precise localization of the centre pixel as a critical centreline pixel.</p><p><strong>Methods: </strong>PSAA locations were manually labelled on dental CBCT data from 150 subjects. The left maxillary sinus images were horizontally flipped. In total, 300 datasets were created. Six different deep learning networks were trained, including 3D U-Net, deeply supervised 3D U-Net (3D U-Net DS), multi-scale deeply supervised 3D U-Net (3D U-Net MSDS), 3D Attention U-Net, 3D V-Net, and 3D Dense U-Net. The performance evaluation involved predicting the centre pixel of the PSAA. This was assessed using mean absolute error (MAE), mean radial error (MRE), and successful detection rate (SDR).</p><p><strong>Results: </strong>The 3D U-Net MSDS achieved the best prediction performance among the tested networks, with an MAE measurement of 0.696 ± 1.552 mm and MRE of 1.101 ± 2.270 mm. In comparison, the 3D U-Net showed the lowest performance. The 3D U-Net MSDS demonstrated a SDR of 95% within a 2 mm MAE. This was a significantly higher result than other networks that achieved a detection rate of over 80%.</p><p><strong>Conclusions: </strong>This study presents a robust deep learning network for accurate PSAA detection in dental CBCT images, emphasizing precise centre pixel localization. The method achieves high accuracy in locating small vessels, such as the PSAA, and has the potential to enhance detection accuracy and efficiency, thus impacting oral and maxillofacial surgery planning and decision-making.</p>","PeriodicalId":11261,"journal":{"name":"Dento maxillo facial radiology","volume":"53 1","pages":"22-31"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11003607/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automatic detection of posterior superior alveolar artery in dental cone-beam CT images using a deeply supervised multi-scale 3D network.\",\"authors\":\"Jae-An Park, DaEl Kim, Su Yang, Ju-Hee Kang, Jo-Eun Kim, Kyung-Hoe Huh, Sam-Sun Lee, Won-Jin Yi, Min-Suk Heo\",\"doi\":\"10.1093/dmfr/twad002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This study aimed to develop a robust and accurate deep learning network for detecting the posterior superior alveolar artery (PSAA) in dental cone-beam CT (CBCT) images, focusing on the precise localization of the centre pixel as a critical centreline pixel.</p><p><strong>Methods: </strong>PSAA locations were manually labelled on dental CBCT data from 150 subjects. The left maxillary sinus images were horizontally flipped. In total, 300 datasets were created. Six different deep learning networks were trained, including 3D U-Net, deeply supervised 3D U-Net (3D U-Net DS), multi-scale deeply supervised 3D U-Net (3D U-Net MSDS), 3D Attention U-Net, 3D V-Net, and 3D Dense U-Net. The performance evaluation involved predicting the centre pixel of the PSAA. This was assessed using mean absolute error (MAE), mean radial error (MRE), and successful detection rate (SDR).</p><p><strong>Results: </strong>The 3D U-Net MSDS achieved the best prediction performance among the tested networks, with an MAE measurement of 0.696 ± 1.552 mm and MRE of 1.101 ± 2.270 mm. In comparison, the 3D U-Net showed the lowest performance. The 3D U-Net MSDS demonstrated a SDR of 95% within a 2 mm MAE. This was a significantly higher result than other networks that achieved a detection rate of over 80%.</p><p><strong>Conclusions: </strong>This study presents a robust deep learning network for accurate PSAA detection in dental CBCT images, emphasizing precise centre pixel localization. The method achieves high accuracy in locating small vessels, such as the PSAA, and has the potential to enhance detection accuracy and efficiency, thus impacting oral and maxillofacial surgery planning and decision-making.</p>\",\"PeriodicalId\":11261,\"journal\":{\"name\":\"Dento maxillo facial radiology\",\"volume\":\"53 1\",\"pages\":\"22-31\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11003607/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dento maxillo facial radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/dmfr/twad002\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dento maxillo facial radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/dmfr/twad002","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Automatic detection of posterior superior alveolar artery in dental cone-beam CT images using a deeply supervised multi-scale 3D network.
Objectives: This study aimed to develop a robust and accurate deep learning network for detecting the posterior superior alveolar artery (PSAA) in dental cone-beam CT (CBCT) images, focusing on the precise localization of the centre pixel as a critical centreline pixel.
Methods: PSAA locations were manually labelled on dental CBCT data from 150 subjects. The left maxillary sinus images were horizontally flipped. In total, 300 datasets were created. Six different deep learning networks were trained, including 3D U-Net, deeply supervised 3D U-Net (3D U-Net DS), multi-scale deeply supervised 3D U-Net (3D U-Net MSDS), 3D Attention U-Net, 3D V-Net, and 3D Dense U-Net. The performance evaluation involved predicting the centre pixel of the PSAA. This was assessed using mean absolute error (MAE), mean radial error (MRE), and successful detection rate (SDR).
Results: The 3D U-Net MSDS achieved the best prediction performance among the tested networks, with an MAE measurement of 0.696 ± 1.552 mm and MRE of 1.101 ± 2.270 mm. In comparison, the 3D U-Net showed the lowest performance. The 3D U-Net MSDS demonstrated a SDR of 95% within a 2 mm MAE. This was a significantly higher result than other networks that achieved a detection rate of over 80%.
Conclusions: This study presents a robust deep learning network for accurate PSAA detection in dental CBCT images, emphasizing precise centre pixel localization. The method achieves high accuracy in locating small vessels, such as the PSAA, and has the potential to enhance detection accuracy and efficiency, thus impacting oral and maxillofacial surgery planning and decision-making.
期刊介绍:
Dentomaxillofacial Radiology (DMFR) is the journal of the International Association of Dentomaxillofacial Radiology (IADMFR) and covers the closely related fields of oral radiology and head and neck imaging.
Established in 1972, DMFR is a key resource keeping dentists, radiologists and clinicians and scientists with an interest in Head and Neck imaging abreast of important research and developments in oral and maxillofacial radiology.
The DMFR editorial board features a panel of international experts including Editor-in-Chief Professor Ralf Schulze. Our editorial board provide their expertise and guidance in shaping the content and direction of the journal.
Quick Facts:
- 2015 Impact Factor - 1.919
- Receipt to first decision - average of 3 weeks
- Acceptance to online publication - average of 3 weeks
- Open access option
- ISSN: 0250-832X
- eISSN: 1476-542X