基于锥束 CT 图像的牙科年龄分类机器学习评估:一种不同的方法。

IF 2.9 2区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Dento maxillo facial radiology Pub Date : 2024-01-11 DOI:10.1093/dmfr/twad009
Ozlem B Dogan, Hatice Boyacioglu, Dincer Goksuluk
{"title":"基于锥束 CT 图像的牙科年龄分类机器学习评估:一种不同的方法。","authors":"Ozlem B Dogan, Hatice Boyacioglu, Dincer Goksuluk","doi":"10.1093/dmfr/twad009","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Machine learning (ML) algorithms are a portion of artificial intelligence that may be used to create more accurate algorithmic procedures for estimating an individual's dental age or defining an age classification. This study aims to use ML algorithms to evaluate the efficacy of pulp/tooth area ratio (PTR) in cone-beam CT (CBCT) images to predict dental age classification in adults.</p><p><strong>Methods: </strong>CBCT images of 236 Turkish individuals (121 males and 115 females) from 18 to 70 years of age were included. PTRs were calculated for six teeth in each individual, and a total of 1416 PTRs encompassed the study dataset. Support vector machine, classification and regression tree, and random forest (RF) models for dental age classification were employed. The accuracy of these techniques was compared. To facilitate this evaluation process, the available data were partitioned into training and test datasets, maintaining a proportion of 70% for training and 30% for testing across the spectrum of ML algorithms employed. The correct classification performances of the trained models were evaluated.</p><p><strong>Results: </strong>The models' performances were found to be low. The models' highest accuracy and confidence intervals were found to belong to the RF algorithm.</p><p><strong>Conclusions: </strong>According to our results, models were found to be low in performance but were considered as a different approach. We suggest examining the different parameters derived from different measuring techniques in the data obtained from CBCT images in order to develop ML algorithms for age classification in forensic situations.</p>","PeriodicalId":11261,"journal":{"name":"Dento maxillo facial radiology","volume":"53 1","pages":"67-73"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11003658/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning assessment of dental age classification based on cone-beam CT images: a different approach.\",\"authors\":\"Ozlem B Dogan, Hatice Boyacioglu, Dincer Goksuluk\",\"doi\":\"10.1093/dmfr/twad009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Machine learning (ML) algorithms are a portion of artificial intelligence that may be used to create more accurate algorithmic procedures for estimating an individual's dental age or defining an age classification. This study aims to use ML algorithms to evaluate the efficacy of pulp/tooth area ratio (PTR) in cone-beam CT (CBCT) images to predict dental age classification in adults.</p><p><strong>Methods: </strong>CBCT images of 236 Turkish individuals (121 males and 115 females) from 18 to 70 years of age were included. PTRs were calculated for six teeth in each individual, and a total of 1416 PTRs encompassed the study dataset. Support vector machine, classification and regression tree, and random forest (RF) models for dental age classification were employed. The accuracy of these techniques was compared. To facilitate this evaluation process, the available data were partitioned into training and test datasets, maintaining a proportion of 70% for training and 30% for testing across the spectrum of ML algorithms employed. The correct classification performances of the trained models were evaluated.</p><p><strong>Results: </strong>The models' performances were found to be low. The models' highest accuracy and confidence intervals were found to belong to the RF algorithm.</p><p><strong>Conclusions: </strong>According to our results, models were found to be low in performance but were considered as a different approach. We suggest examining the different parameters derived from different measuring techniques in the data obtained from CBCT images in order to develop ML algorithms for age classification in forensic situations.</p>\",\"PeriodicalId\":11261,\"journal\":{\"name\":\"Dento maxillo facial radiology\",\"volume\":\"53 1\",\"pages\":\"67-73\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11003658/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dento maxillo facial radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/dmfr/twad009\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dento maxillo facial radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/dmfr/twad009","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

目的:机器学习(ML)算法是人工智能的一部分,可用于创建更精确的算法程序,以估算个人的牙科年龄或定义年龄分类。本研究旨在使用 ML 算法评估锥束 CT(CBCT)图像中牙髓/牙齿面积比(PTR)预测成人牙科年龄分类的有效性:纳入了 236 名土耳其人(121 名男性和 115 名女性)的 CBCT 图像,他们的年龄从 18 岁到 70 岁不等。每个人的 6 颗牙齿都计算了 PTR,研究数据集共包含 1416 个 PTR。研究采用了支持向量机、分类和回归树以及随机森林(RF)模型进行牙齿年龄分类。对这些技术的准确性进行了比较。为便于评估,我们将可用数据分为训练数据集和测试数据集,在所使用的各种 ML 算法中,训练和测试所占比例分别为 70% 和 30%。对训练模型的正确分类性能进行了评估:结果:发现模型的性能较低。结论:根据我们的结果,发现 RF 算法的模型准确率和置信区间最高:根据我们的结果,发现模型的性能较低,但被认为是一种不同的方法。我们建议对 CBCT 图像数据中不同测量技术得出的不同参数进行研究,以开发用于法医情况下年龄分类的 ML 算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning assessment of dental age classification based on cone-beam CT images: a different approach.

Objectives: Machine learning (ML) algorithms are a portion of artificial intelligence that may be used to create more accurate algorithmic procedures for estimating an individual's dental age or defining an age classification. This study aims to use ML algorithms to evaluate the efficacy of pulp/tooth area ratio (PTR) in cone-beam CT (CBCT) images to predict dental age classification in adults.

Methods: CBCT images of 236 Turkish individuals (121 males and 115 females) from 18 to 70 years of age were included. PTRs were calculated for six teeth in each individual, and a total of 1416 PTRs encompassed the study dataset. Support vector machine, classification and regression tree, and random forest (RF) models for dental age classification were employed. The accuracy of these techniques was compared. To facilitate this evaluation process, the available data were partitioned into training and test datasets, maintaining a proportion of 70% for training and 30% for testing across the spectrum of ML algorithms employed. The correct classification performances of the trained models were evaluated.

Results: The models' performances were found to be low. The models' highest accuracy and confidence intervals were found to belong to the RF algorithm.

Conclusions: According to our results, models were found to be low in performance but were considered as a different approach. We suggest examining the different parameters derived from different measuring techniques in the data obtained from CBCT images in order to develop ML algorithms for age classification in forensic situations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
9.10%
发文量
65
审稿时长
4-8 weeks
期刊介绍: Dentomaxillofacial Radiology (DMFR) is the journal of the International Association of Dentomaxillofacial Radiology (IADMFR) and covers the closely related fields of oral radiology and head and neck imaging. Established in 1972, DMFR is a key resource keeping dentists, radiologists and clinicians and scientists with an interest in Head and Neck imaging abreast of important research and developments in oral and maxillofacial radiology. The DMFR editorial board features a panel of international experts including Editor-in-Chief Professor Ralf Schulze. Our editorial board provide their expertise and guidance in shaping the content and direction of the journal. Quick Facts: - 2015 Impact Factor - 1.919 - Receipt to first decision - average of 3 weeks - Acceptance to online publication - average of 3 weeks - Open access option - ISSN: 0250-832X - eISSN: 1476-542X
期刊最新文献
Carotid calcifications in panoramic radiographs can predict vascular risk. Preparing for downstream tasks in AI for dental radiology: a baseline performance comparison of deep learning models. Temporomandibular joint assessment in MRI images using artificial intelligence tools: Where are we now? A systematic review. Gray values and noise behavior of cone-beam computed tomography machines-an in vitro study. A novel method for measuring the direction and angle of Central ray and predicting rotation center via panorama phantom.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1