Fergus V Coakley, Bryan R Foster, David W Schroeder, William D Rooney, Randall W Jones, Christopher L Amling
{"title":"直肠内磁共振成像和前列腺腔内活检组合系统的原型描述和体内外评估。","authors":"Fergus V Coakley, Bryan R Foster, David W Schroeder, William D Rooney, Randall W Jones, Christopher L Amling","doi":"10.1097/RCT.0000000000001583","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>We describe early ex vivo proof-of-concept testing of a novel system composed of a disposable endorectal coil and converging multichannel needle guide with a reusable clamp stand, embedded electronics, and baseplate to allow for endorectal magnetic resonance (MR) imaging and in-bore MRI-targeted biopsy of the prostate as a single integrated procedure. Using prostate phantoms imaged with standard T 2 -weighted sequences in a Siemens 3T Prisma MR scanner, we measured the signal-to-noise ratio in successive 1-cm distances from the novel coil and from a commercially available inflatable balloon coil and measured the lateral and longitudinal deviation of the tip of a deployed MR compatible needle from the intended target point. Signal-to-noise ratio obtained with the novel system was significantly better than the inflatable balloon coil at each of five 1-cm intervals, with a mean improvement of 78% ( P < 0.05). In a representative sampling of 15 guidance channels, the mean lateral deviation for MR imaging-guided needle positioning was 1.7 mm and the mean longitudinal deviation was 2.0 mm. Our ex vivo results suggest that our novel system provides significantly improved signal-to-noise ratio when compared with an inflatable balloon coil and is capable of accurate MRI-guided needle deployment.</p>","PeriodicalId":15402,"journal":{"name":"Journal of Computer Assisted Tomography","volume":" ","pages":"378-381"},"PeriodicalIF":1.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prototype Description and Ex Vivo Evaluation of a System for Combined Endorectal Magnetic Resonance Imaging and In-Bore Biopsy of the Prostate.\",\"authors\":\"Fergus V Coakley, Bryan R Foster, David W Schroeder, William D Rooney, Randall W Jones, Christopher L Amling\",\"doi\":\"10.1097/RCT.0000000000001583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>We describe early ex vivo proof-of-concept testing of a novel system composed of a disposable endorectal coil and converging multichannel needle guide with a reusable clamp stand, embedded electronics, and baseplate to allow for endorectal magnetic resonance (MR) imaging and in-bore MRI-targeted biopsy of the prostate as a single integrated procedure. Using prostate phantoms imaged with standard T 2 -weighted sequences in a Siemens 3T Prisma MR scanner, we measured the signal-to-noise ratio in successive 1-cm distances from the novel coil and from a commercially available inflatable balloon coil and measured the lateral and longitudinal deviation of the tip of a deployed MR compatible needle from the intended target point. Signal-to-noise ratio obtained with the novel system was significantly better than the inflatable balloon coil at each of five 1-cm intervals, with a mean improvement of 78% ( P < 0.05). In a representative sampling of 15 guidance channels, the mean lateral deviation for MR imaging-guided needle positioning was 1.7 mm and the mean longitudinal deviation was 2.0 mm. Our ex vivo results suggest that our novel system provides significantly improved signal-to-noise ratio when compared with an inflatable balloon coil and is capable of accurate MRI-guided needle deployment.</p>\",\"PeriodicalId\":15402,\"journal\":{\"name\":\"Journal of Computer Assisted Tomography\",\"volume\":\" \",\"pages\":\"378-381\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Assisted Tomography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/RCT.0000000000001583\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Assisted Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RCT.0000000000001583","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Prototype Description and Ex Vivo Evaluation of a System for Combined Endorectal Magnetic Resonance Imaging and In-Bore Biopsy of the Prostate.
Abstract: We describe early ex vivo proof-of-concept testing of a novel system composed of a disposable endorectal coil and converging multichannel needle guide with a reusable clamp stand, embedded electronics, and baseplate to allow for endorectal magnetic resonance (MR) imaging and in-bore MRI-targeted biopsy of the prostate as a single integrated procedure. Using prostate phantoms imaged with standard T 2 -weighted sequences in a Siemens 3T Prisma MR scanner, we measured the signal-to-noise ratio in successive 1-cm distances from the novel coil and from a commercially available inflatable balloon coil and measured the lateral and longitudinal deviation of the tip of a deployed MR compatible needle from the intended target point. Signal-to-noise ratio obtained with the novel system was significantly better than the inflatable balloon coil at each of five 1-cm intervals, with a mean improvement of 78% ( P < 0.05). In a representative sampling of 15 guidance channels, the mean lateral deviation for MR imaging-guided needle positioning was 1.7 mm and the mean longitudinal deviation was 2.0 mm. Our ex vivo results suggest that our novel system provides significantly improved signal-to-noise ratio when compared with an inflatable balloon coil and is capable of accurate MRI-guided needle deployment.
期刊介绍:
The mission of Journal of Computer Assisted Tomography is to showcase the latest clinical and research developments in CT, MR, and closely related diagnostic techniques. We encourage submission of both original research and review articles that have immediate or promissory clinical applications. Topics of special interest include: 1) functional MR and CT of the brain and body; 2) advanced/innovative MRI techniques (diffusion, perfusion, rapid scanning); and 3) advanced/innovative CT techniques (perfusion, multi-energy, dose-reduction, and processing).