{"title":"JMJD2B表观遗传调节因子的甲基化会不同程度地影响其协同激活ETV1和JUN转录因子的能力。","authors":"Tae-Dong Kim, Ruicai Gu, Ralf Janknecht","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Jumonji C domain-containing (JMJD) 2B (JMJD2B) is a transcriptional cofactor and histone demethylase that is involved in prostate cancer formation. However, how its function is regulated by posttranslational modification has remained elusive. Hence, we examined if JMJD2B would be regulated by lysine methylation.</p><p><strong>Methods: </strong>Through in vitro methylation assays and Western blotting with methyl-lysine specific antibodies, we analyzed lysine methylation within JMJD2B. Identified methylated lysine residues were mutated to arginine residues and the respective impact on JMJD2B transcriptional activity measured with a reporter gene assay in human LNCaP prostate cancer cells.</p><p><strong>Results: </strong>We discovered that JMJD2B is methylated on up to six different lysine residues. Further, we identified the suppressor of variegation 3-9/enhancer of zeste/trithorax (SET) domain-containing protein 7/9 (SET7/9) as the methyltransferase being responsible for this posttranslational modification. Mutating the methylation sites in JMJD2B to arginine residues led to diminished coactivation of the Ju-nana (JUN) transcription factor, which is a known oncogenic protein in prostate tumors. In contrast, methylation of JMJD2B had no impact on its ability to coactivate another transcription factor associated with prostate cancer, the DNA-binding protein E26 transformation-specific (ETS) variant 1 (ETV1). Consistent with a potential joint action of JMJD2B, SET7/9 and JUN in prostate cancer, the expression of JMJD2B in human prostate tumors was positively correlated with both SET7/9 and JUN levels.</p><p><strong>Conclusions: </strong>The identified SET7/9-mediated methylation of JMJD2B appears to impact its cooperation with selected interacting transcription factors in prostate cancer cells. Given the implicated roles of JMJD2B beyond prostate tumorigenesis, SET7/9-mediated methylation of JMJD2B possibly also influences the development of other cancers, while its impairment might have relevance for obesity or a global developmental delay that can be elicited by reduced JMJD2B activity.</p>","PeriodicalId":94044,"journal":{"name":"International journal of biochemistry and molecular biology","volume":"14 6","pages":"101-115"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10776875/pdf/","citationCount":"0","resultStr":"{\"title\":\"Methylation of the JMJD2B epigenetic regulator differentially affects its ability to coactivate the ETV1 and JUN transcription factors.\",\"authors\":\"Tae-Dong Kim, Ruicai Gu, Ralf Janknecht\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Jumonji C domain-containing (JMJD) 2B (JMJD2B) is a transcriptional cofactor and histone demethylase that is involved in prostate cancer formation. However, how its function is regulated by posttranslational modification has remained elusive. Hence, we examined if JMJD2B would be regulated by lysine methylation.</p><p><strong>Methods: </strong>Through in vitro methylation assays and Western blotting with methyl-lysine specific antibodies, we analyzed lysine methylation within JMJD2B. Identified methylated lysine residues were mutated to arginine residues and the respective impact on JMJD2B transcriptional activity measured with a reporter gene assay in human LNCaP prostate cancer cells.</p><p><strong>Results: </strong>We discovered that JMJD2B is methylated on up to six different lysine residues. Further, we identified the suppressor of variegation 3-9/enhancer of zeste/trithorax (SET) domain-containing protein 7/9 (SET7/9) as the methyltransferase being responsible for this posttranslational modification. Mutating the methylation sites in JMJD2B to arginine residues led to diminished coactivation of the Ju-nana (JUN) transcription factor, which is a known oncogenic protein in prostate tumors. In contrast, methylation of JMJD2B had no impact on its ability to coactivate another transcription factor associated with prostate cancer, the DNA-binding protein E26 transformation-specific (ETS) variant 1 (ETV1). Consistent with a potential joint action of JMJD2B, SET7/9 and JUN in prostate cancer, the expression of JMJD2B in human prostate tumors was positively correlated with both SET7/9 and JUN levels.</p><p><strong>Conclusions: </strong>The identified SET7/9-mediated methylation of JMJD2B appears to impact its cooperation with selected interacting transcription factors in prostate cancer cells. Given the implicated roles of JMJD2B beyond prostate tumorigenesis, SET7/9-mediated methylation of JMJD2B possibly also influences the development of other cancers, while its impairment might have relevance for obesity or a global developmental delay that can be elicited by reduced JMJD2B activity.</p>\",\"PeriodicalId\":94044,\"journal\":{\"name\":\"International journal of biochemistry and molecular biology\",\"volume\":\"14 6\",\"pages\":\"101-115\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10776875/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of biochemistry and molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of biochemistry and molecular biology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Methylation of the JMJD2B epigenetic regulator differentially affects its ability to coactivate the ETV1 and JUN transcription factors.
Objectives: Jumonji C domain-containing (JMJD) 2B (JMJD2B) is a transcriptional cofactor and histone demethylase that is involved in prostate cancer formation. However, how its function is regulated by posttranslational modification has remained elusive. Hence, we examined if JMJD2B would be regulated by lysine methylation.
Methods: Through in vitro methylation assays and Western blotting with methyl-lysine specific antibodies, we analyzed lysine methylation within JMJD2B. Identified methylated lysine residues were mutated to arginine residues and the respective impact on JMJD2B transcriptional activity measured with a reporter gene assay in human LNCaP prostate cancer cells.
Results: We discovered that JMJD2B is methylated on up to six different lysine residues. Further, we identified the suppressor of variegation 3-9/enhancer of zeste/trithorax (SET) domain-containing protein 7/9 (SET7/9) as the methyltransferase being responsible for this posttranslational modification. Mutating the methylation sites in JMJD2B to arginine residues led to diminished coactivation of the Ju-nana (JUN) transcription factor, which is a known oncogenic protein in prostate tumors. In contrast, methylation of JMJD2B had no impact on its ability to coactivate another transcription factor associated with prostate cancer, the DNA-binding protein E26 transformation-specific (ETS) variant 1 (ETV1). Consistent with a potential joint action of JMJD2B, SET7/9 and JUN in prostate cancer, the expression of JMJD2B in human prostate tumors was positively correlated with both SET7/9 and JUN levels.
Conclusions: The identified SET7/9-mediated methylation of JMJD2B appears to impact its cooperation with selected interacting transcription factors in prostate cancer cells. Given the implicated roles of JMJD2B beyond prostate tumorigenesis, SET7/9-mediated methylation of JMJD2B possibly also influences the development of other cancers, while its impairment might have relevance for obesity or a global developmental delay that can be elicited by reduced JMJD2B activity.