{"title":"从茄属植物果皮提取物中制备二氧化钛纳米粒子及其应用。","authors":"Agnishwar Girigoswami, Balasubramanian Deepika, Ashok Kumar Pandurangan, Koyeli Girigoswami","doi":"10.1080/21691401.2023.2301068","DOIUrl":null,"url":null,"abstract":"<p><p>The present study describes a method for the preparation of green titanium dioxide (TiO<sub>2</sub>) nanoparticles from the peel of <i>Solanum tuberosum</i>, commonly known as potato, and the potato peel being a kitchen waste. The green synthesized TiO<sub>2</sub> (G- TiO<sub>2</sub>) nanoparticles were characterized using UV-visible spectroscopy, dynamic light scattering, scanning electron microscopy, TEM, XRD, and FTIR spectroscopy. The photocatalytic activity of the G- TiO<sub>2</sub> nanoparticles was also shown using the dye bromophenol blue. To explore the biocompatibility of the G- TiO<sub>2</sub>, the cell viability in normal as well as cancer cells was assessed. Further, the <i>in vivo</i> toxicity of the G- TiO<sub>2</sub> nanoparticles was assessed using zebrafish embryos. The novelty of the present invention is to utilize kitchen waste for a useful purpose for the synthesis of titanium dioxide nanoparticles which is known to have UV light scavenging properties. Moreover, the potato peel is a natural antioxidant and possesses a skin-lightening effect. A combination of the potato peel extract and titanium dioxide prepared using the extract will have a combinatorial effect for protecting UV light exposure to the skin and lightening the skin colour.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"52 1","pages":"59-68"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of titanium dioxide nanoparticles from <i>Solanum Tuberosum</i> peel extract and its applications.\",\"authors\":\"Agnishwar Girigoswami, Balasubramanian Deepika, Ashok Kumar Pandurangan, Koyeli Girigoswami\",\"doi\":\"10.1080/21691401.2023.2301068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study describes a method for the preparation of green titanium dioxide (TiO<sub>2</sub>) nanoparticles from the peel of <i>Solanum tuberosum</i>, commonly known as potato, and the potato peel being a kitchen waste. The green synthesized TiO<sub>2</sub> (G- TiO<sub>2</sub>) nanoparticles were characterized using UV-visible spectroscopy, dynamic light scattering, scanning electron microscopy, TEM, XRD, and FTIR spectroscopy. The photocatalytic activity of the G- TiO<sub>2</sub> nanoparticles was also shown using the dye bromophenol blue. To explore the biocompatibility of the G- TiO<sub>2</sub>, the cell viability in normal as well as cancer cells was assessed. Further, the <i>in vivo</i> toxicity of the G- TiO<sub>2</sub> nanoparticles was assessed using zebrafish embryos. The novelty of the present invention is to utilize kitchen waste for a useful purpose for the synthesis of titanium dioxide nanoparticles which is known to have UV light scavenging properties. Moreover, the potato peel is a natural antioxidant and possesses a skin-lightening effect. A combination of the potato peel extract and titanium dioxide prepared using the extract will have a combinatorial effect for protecting UV light exposure to the skin and lightening the skin colour.</p>\",\"PeriodicalId\":8736,\"journal\":{\"name\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"volume\":\"52 1\",\"pages\":\"59-68\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21691401.2023.2301068\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2023.2301068","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Preparation of titanium dioxide nanoparticles from Solanum Tuberosum peel extract and its applications.
The present study describes a method for the preparation of green titanium dioxide (TiO2) nanoparticles from the peel of Solanum tuberosum, commonly known as potato, and the potato peel being a kitchen waste. The green synthesized TiO2 (G- TiO2) nanoparticles were characterized using UV-visible spectroscopy, dynamic light scattering, scanning electron microscopy, TEM, XRD, and FTIR spectroscopy. The photocatalytic activity of the G- TiO2 nanoparticles was also shown using the dye bromophenol blue. To explore the biocompatibility of the G- TiO2, the cell viability in normal as well as cancer cells was assessed. Further, the in vivo toxicity of the G- TiO2 nanoparticles was assessed using zebrafish embryos. The novelty of the present invention is to utilize kitchen waste for a useful purpose for the synthesis of titanium dioxide nanoparticles which is known to have UV light scavenging properties. Moreover, the potato peel is a natural antioxidant and possesses a skin-lightening effect. A combination of the potato peel extract and titanium dioxide prepared using the extract will have a combinatorial effect for protecting UV light exposure to the skin and lightening the skin colour.
期刊介绍:
Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.