用于锂金属电池的单相局部高浓度固体聚合物电解质

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-01-12 DOI:10.1038/s41560-023-01443-0
Weiran Zhang, Volodymyr Koverga, Sufu Liu, Jigang Zhou, Jian Wang, Panxing Bai, Sha Tan, Naveen K. Dandu, Zeyi Wang, Fu Chen, Jiale Xia, Hongli Wan, Xiyue Zhang, Haochen Yang, Brett L. Lucht, Ai-Min Li, Xiao-Qing Yang, Enyuan Hu, Srinivasa R. Raghavan, Anh T. Ngo, Chunsheng Wang
{"title":"用于锂金属电池的单相局部高浓度固体聚合物电解质","authors":"Weiran Zhang, Volodymyr Koverga, Sufu Liu, Jigang Zhou, Jian Wang, Panxing Bai, Sha Tan, Naveen K. Dandu, Zeyi Wang, Fu Chen, Jiale Xia, Hongli Wan, Xiyue Zhang, Haochen Yang, Brett L. Lucht, Ai-Min Li, Xiao-Qing Yang, Enyuan Hu, Srinivasa R. Raghavan, Anh T. Ngo, Chunsheng Wang","doi":"10.1038/s41560-023-01443-0","DOIUrl":null,"url":null,"abstract":"Solid polymers are promising electrolytes for Li-metal batteries, but they have limitations: they cannot simultaneously achieve high ionic conductivity, good mechanical strength and compatibility with high-voltage cathodes while suppressing Li dendrites. Here, we design a class of locally high-concentration solid polymer electrolytes based on polymer blends, which are termed Li-polymer in F diluter (LPIFD). The Li-polymer (polymer-in-salt) ensures continuous Li-ion conduction channels and contributes to the solid electrolyte interphase (SEI), and the F diluter (inert fluorinated polymer) adds mechanical strength. Studies reveal that a single-phase LPIFD, which is based on a miscible polymer blend, lacks phase boundaries and forms an organic-less and LiF-rich SEI, effectively suppressing lithium dendrites. The single-phase LPIFD delivers ionic conductivity of 3.0 × 10−4 S cm−1, and enables the Li anode to reach a high coulombic efficiency of 99.1% and a critical current density of 3.7 mA cm−2. Furthermore, the ability to form an F-rich cathode electrolyte interphase allows LiNi0.8Co0.1Mn0.1O2||Li cells to achieve a cycle life of 450 cycles at a high operating voltage of 4.5 V. This design will inspire efforts to commercialize polymer electrolytes for high-energy Li-metal batteries. Batteries with solid polymer electrolytes face challenges in electrochemical stability and compatibility with high-voltage cathodes. Chunsheng Wang and colleagues have developed a polymer blend with a high Li salt concentration that enhances the stability of solid polymer electrolytes and achieves promising electrochemical performance in full-cell applications.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries\",\"authors\":\"Weiran Zhang, Volodymyr Koverga, Sufu Liu, Jigang Zhou, Jian Wang, Panxing Bai, Sha Tan, Naveen K. Dandu, Zeyi Wang, Fu Chen, Jiale Xia, Hongli Wan, Xiyue Zhang, Haochen Yang, Brett L. Lucht, Ai-Min Li, Xiao-Qing Yang, Enyuan Hu, Srinivasa R. Raghavan, Anh T. Ngo, Chunsheng Wang\",\"doi\":\"10.1038/s41560-023-01443-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid polymers are promising electrolytes for Li-metal batteries, but they have limitations: they cannot simultaneously achieve high ionic conductivity, good mechanical strength and compatibility with high-voltage cathodes while suppressing Li dendrites. Here, we design a class of locally high-concentration solid polymer electrolytes based on polymer blends, which are termed Li-polymer in F diluter (LPIFD). The Li-polymer (polymer-in-salt) ensures continuous Li-ion conduction channels and contributes to the solid electrolyte interphase (SEI), and the F diluter (inert fluorinated polymer) adds mechanical strength. Studies reveal that a single-phase LPIFD, which is based on a miscible polymer blend, lacks phase boundaries and forms an organic-less and LiF-rich SEI, effectively suppressing lithium dendrites. The single-phase LPIFD delivers ionic conductivity of 3.0 × 10−4 S cm−1, and enables the Li anode to reach a high coulombic efficiency of 99.1% and a critical current density of 3.7 mA cm−2. Furthermore, the ability to form an F-rich cathode electrolyte interphase allows LiNi0.8Co0.1Mn0.1O2||Li cells to achieve a cycle life of 450 cycles at a high operating voltage of 4.5 V. This design will inspire efforts to commercialize polymer electrolytes for high-energy Li-metal batteries. Batteries with solid polymer electrolytes face challenges in electrochemical stability and compatibility with high-voltage cathodes. Chunsheng Wang and colleagues have developed a polymer blend with a high Li salt concentration that enhances the stability of solid polymer electrolytes and achieves promising electrochemical performance in full-cell applications.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41560-023-01443-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-023-01443-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

固体聚合物是很有前途的锂金属电池电解质,但它们也有局限性:它们无法同时实现高离子电导率、良好的机械强度以及与高电压阴极的兼容性,同时抑制锂枝晶。在此,我们设计了一类基于聚合物混合物的局部高浓度固体聚合物电解质,这种电解质被称为 "锂聚合物 F 稀释剂(LPIFD)"。锂聚合物(盐中聚合物)可确保连续的锂离子传导通道,并有助于形成固体电解质间相(SEI),而F稀释剂(惰性含氟聚合物)则可增加机械强度。研究表明,基于混溶聚合物混合物的单相 LPIFD 缺乏相界,可形成无有机物且富含锂氟的 SEI,从而有效抑制锂枝晶。单相 LPIFD 的离子电导率为 3.0 × 10-4 S cm-1,可使锂阳极达到 99.1% 的高库仑效率和 3.7 mA cm-2 的临界电流密度。此外,由于能够形成富含 F 的阴极电解质间相,镍钴锰锂电池在 4.5 V 高工作电压下的循环寿命可达 450 次。这一设计将推动高能锂金属电池聚合物电解质的商业化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries
Solid polymers are promising electrolytes for Li-metal batteries, but they have limitations: they cannot simultaneously achieve high ionic conductivity, good mechanical strength and compatibility with high-voltage cathodes while suppressing Li dendrites. Here, we design a class of locally high-concentration solid polymer electrolytes based on polymer blends, which are termed Li-polymer in F diluter (LPIFD). The Li-polymer (polymer-in-salt) ensures continuous Li-ion conduction channels and contributes to the solid electrolyte interphase (SEI), and the F diluter (inert fluorinated polymer) adds mechanical strength. Studies reveal that a single-phase LPIFD, which is based on a miscible polymer blend, lacks phase boundaries and forms an organic-less and LiF-rich SEI, effectively suppressing lithium dendrites. The single-phase LPIFD delivers ionic conductivity of 3.0 × 10−4 S cm−1, and enables the Li anode to reach a high coulombic efficiency of 99.1% and a critical current density of 3.7 mA cm−2. Furthermore, the ability to form an F-rich cathode electrolyte interphase allows LiNi0.8Co0.1Mn0.1O2||Li cells to achieve a cycle life of 450 cycles at a high operating voltage of 4.5 V. This design will inspire efforts to commercialize polymer electrolytes for high-energy Li-metal batteries. Batteries with solid polymer electrolytes face challenges in electrochemical stability and compatibility with high-voltage cathodes. Chunsheng Wang and colleagues have developed a polymer blend with a high Li salt concentration that enhances the stability of solid polymer electrolytes and achieves promising electrochemical performance in full-cell applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Excited State Dynamics of Geometrical Evolution of α-Substituted Dibenzoylmethanatoboron Difluoride Complex with Aggregation-Induced Emission Property. Solvent-Directed Social Chiral Self-Sorting in Pd2L4 Coordination Cages. Length and Sequence-Selective Polymer Synthesis Templated by a Combination of Covalent and Noncovalent Base-Pairing Interactions A Universal Interfacial Reconstruction Strategy Based on Converting Residual Alkali for Sodium Layered Oxide Cathodes: Marvelous Air Stability, Reversible Anion Redox, and Practical Full Cell Vertically Expanded Crystalline Porous Covalent Organic Frameworks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1