Simon Lebech Cichosz, Morten Hasselstrøm Jensen, Søren Schou Olesen
{"title":"基于连续血糖监测预测 1 型糖尿病患者每周低血糖风险的机器学习模型的开发与验证。","authors":"Simon Lebech Cichosz, Morten Hasselstrøm Jensen, Søren Schou Olesen","doi":"10.1089/dia.2023.0532","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Aim:</i></b> The aim of this study was to develop and validate a prediction model based on continuous glucose monitoring (CGM) data to identify a week-to-week risk profile of excessive hypoglycemia. <b><i>Methods:</i></b> We analyzed, trained, and internally tested two prediction models using CGM data from 205 type 1 diabetes patients with long-term CGM monitoring. A binary classification approach (XGBoost) combined with feature engineering deployed on the CGM signals was utilized to predict excessive hypoglycemia risk defined by two targets (time below range [TBR] >4% and the upper TBR 90th percentile limit) of TBR the following week. The models were validated in two independent cohorts with a total of 253 additional patients. <b><i>Results:</i></b> A total of 61,470 weeks of CGM data were included in the analysis. The XGBoost models had an area under the receiver operating characteristic curve (ROC-AUC) of 0.83-0.87 (95% confidence interval; 0.83-0.88) in the test dataset. The external validation showed ROC-AUCs of 0.81-0.90. The most discriminative features included the low blood glucose index, the glycemic risk assessment diabetes equation (GRADE), hypoglycemia, the TBR, waveform length, the coefficient of variation and mean glucose during the previous week. This highlights that the pattern of hypoglycemia combined with glucose variability during the past week contains information on the risk of future hypoglycemia. <b><i>Conclusion:</i></b> Prediction models based on real-world CGM data can be used to predict the risk of hypoglycemia in the forthcoming week. The models showed good performance in both the internal and external validation cohorts.</p>","PeriodicalId":11159,"journal":{"name":"Diabetes technology & therapeutics","volume":" ","pages":"457-466"},"PeriodicalIF":5.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and Validation of a Machine Learning Model to Predict Weekly Risk of Hypoglycemia in Patients with Type 1 Diabetes Based on Continuous Glucose Monitoring.\",\"authors\":\"Simon Lebech Cichosz, Morten Hasselstrøm Jensen, Søren Schou Olesen\",\"doi\":\"10.1089/dia.2023.0532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Aim:</i></b> The aim of this study was to develop and validate a prediction model based on continuous glucose monitoring (CGM) data to identify a week-to-week risk profile of excessive hypoglycemia. <b><i>Methods:</i></b> We analyzed, trained, and internally tested two prediction models using CGM data from 205 type 1 diabetes patients with long-term CGM monitoring. A binary classification approach (XGBoost) combined with feature engineering deployed on the CGM signals was utilized to predict excessive hypoglycemia risk defined by two targets (time below range [TBR] >4% and the upper TBR 90th percentile limit) of TBR the following week. The models were validated in two independent cohorts with a total of 253 additional patients. <b><i>Results:</i></b> A total of 61,470 weeks of CGM data were included in the analysis. The XGBoost models had an area under the receiver operating characteristic curve (ROC-AUC) of 0.83-0.87 (95% confidence interval; 0.83-0.88) in the test dataset. The external validation showed ROC-AUCs of 0.81-0.90. The most discriminative features included the low blood glucose index, the glycemic risk assessment diabetes equation (GRADE), hypoglycemia, the TBR, waveform length, the coefficient of variation and mean glucose during the previous week. This highlights that the pattern of hypoglycemia combined with glucose variability during the past week contains information on the risk of future hypoglycemia. <b><i>Conclusion:</i></b> Prediction models based on real-world CGM data can be used to predict the risk of hypoglycemia in the forthcoming week. The models showed good performance in both the internal and external validation cohorts.</p>\",\"PeriodicalId\":11159,\"journal\":{\"name\":\"Diabetes technology & therapeutics\",\"volume\":\" \",\"pages\":\"457-466\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes technology & therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/dia.2023.0532\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes technology & therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/dia.2023.0532","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Development and Validation of a Machine Learning Model to Predict Weekly Risk of Hypoglycemia in Patients with Type 1 Diabetes Based on Continuous Glucose Monitoring.
Aim: The aim of this study was to develop and validate a prediction model based on continuous glucose monitoring (CGM) data to identify a week-to-week risk profile of excessive hypoglycemia. Methods: We analyzed, trained, and internally tested two prediction models using CGM data from 205 type 1 diabetes patients with long-term CGM monitoring. A binary classification approach (XGBoost) combined with feature engineering deployed on the CGM signals was utilized to predict excessive hypoglycemia risk defined by two targets (time below range [TBR] >4% and the upper TBR 90th percentile limit) of TBR the following week. The models were validated in two independent cohorts with a total of 253 additional patients. Results: A total of 61,470 weeks of CGM data were included in the analysis. The XGBoost models had an area under the receiver operating characteristic curve (ROC-AUC) of 0.83-0.87 (95% confidence interval; 0.83-0.88) in the test dataset. The external validation showed ROC-AUCs of 0.81-0.90. The most discriminative features included the low blood glucose index, the glycemic risk assessment diabetes equation (GRADE), hypoglycemia, the TBR, waveform length, the coefficient of variation and mean glucose during the previous week. This highlights that the pattern of hypoglycemia combined with glucose variability during the past week contains information on the risk of future hypoglycemia. Conclusion: Prediction models based on real-world CGM data can be used to predict the risk of hypoglycemia in the forthcoming week. The models showed good performance in both the internal and external validation cohorts.
期刊介绍:
Diabetes Technology & Therapeutics is the only peer-reviewed journal providing healthcare professionals with information on new devices, drugs, drug delivery systems, and software for managing patients with diabetes. This leading international journal delivers practical information and comprehensive coverage of cutting-edge technologies and therapeutics in the field, and each issue highlights new pharmacological and device developments to optimize patient care.