{"title":"USP9Y 和 DDX3Y 在肺癌中的抗肿瘤作用:USP9Y 通过去泛素化阻止 DDX3Y 降解,从而稳定 DDX3Y","authors":"Lei Xiu , Bo Ma , Lili Ding","doi":"10.1016/j.acthis.2023.152132","DOIUrl":null,"url":null,"abstract":"<div><p>In previous studies, downregulation of USP9Y and DDX3Y in lung cancer (LC) tissues was identified, while their function in LC progression remains elusive. In our current work, we intended to elucidate the effect and mechanisms of USP9Y and DDX3Y in LC. Gene downregulation has been confirmed in our LC tissues and cells. The effect of USP9Y or DDX3Y on LC cell malignancies was analyzed by functional assay. Both USP9Y and DDX3Y overexpression showed suppressive impact on LC cell malignancies. USP9Y overexpression has also been demonstrated to inhibit tumorigenesis in vivo. Based on GEPIA database, it was found that there was a positive correlation between the levels of USP9Y and DDX3Y in LC tissues. The mRNA expression of DDX3Y was not affected by USP9Y overexpression, while its protein levels were significantly up-regulated in USP9Y overexpressed LC cells. Moreover, USP9Y interacted with DDX3Y and has been demonstrated to stabilize DDX3Y expression by preventing its degradation via deubiquitination. In conclusion, USP9Y and DDX3Y exerted antioncogenic effects on the cell proliferation potential, cell cycle process, apoptosis, and tumorigenesis of LC. USP9Y binds to DDX3Y to prevent DDX3Y degradation through deubiquitination.</p></div>","PeriodicalId":6961,"journal":{"name":"Acta histochemica","volume":"126 1","pages":"Article 152132"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0065128123001393/pdfft?md5=5121f558eb23049a58fe34a424eb92e9&pid=1-s2.0-S0065128123001393-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Antioncogenic roles of USP9Y and DDX3Y in lung cancer: USP9Y stabilizes DDX3Y by preventing its degradation through deubiquitination\",\"authors\":\"Lei Xiu , Bo Ma , Lili Ding\",\"doi\":\"10.1016/j.acthis.2023.152132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In previous studies, downregulation of USP9Y and DDX3Y in lung cancer (LC) tissues was identified, while their function in LC progression remains elusive. In our current work, we intended to elucidate the effect and mechanisms of USP9Y and DDX3Y in LC. Gene downregulation has been confirmed in our LC tissues and cells. The effect of USP9Y or DDX3Y on LC cell malignancies was analyzed by functional assay. Both USP9Y and DDX3Y overexpression showed suppressive impact on LC cell malignancies. USP9Y overexpression has also been demonstrated to inhibit tumorigenesis in vivo. Based on GEPIA database, it was found that there was a positive correlation between the levels of USP9Y and DDX3Y in LC tissues. The mRNA expression of DDX3Y was not affected by USP9Y overexpression, while its protein levels were significantly up-regulated in USP9Y overexpressed LC cells. Moreover, USP9Y interacted with DDX3Y and has been demonstrated to stabilize DDX3Y expression by preventing its degradation via deubiquitination. In conclusion, USP9Y and DDX3Y exerted antioncogenic effects on the cell proliferation potential, cell cycle process, apoptosis, and tumorigenesis of LC. USP9Y binds to DDX3Y to prevent DDX3Y degradation through deubiquitination.</p></div>\",\"PeriodicalId\":6961,\"journal\":{\"name\":\"Acta histochemica\",\"volume\":\"126 1\",\"pages\":\"Article 152132\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0065128123001393/pdfft?md5=5121f558eb23049a58fe34a424eb92e9&pid=1-s2.0-S0065128123001393-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta histochemica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0065128123001393\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta histochemica","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0065128123001393","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Antioncogenic roles of USP9Y and DDX3Y in lung cancer: USP9Y stabilizes DDX3Y by preventing its degradation through deubiquitination
In previous studies, downregulation of USP9Y and DDX3Y in lung cancer (LC) tissues was identified, while their function in LC progression remains elusive. In our current work, we intended to elucidate the effect and mechanisms of USP9Y and DDX3Y in LC. Gene downregulation has been confirmed in our LC tissues and cells. The effect of USP9Y or DDX3Y on LC cell malignancies was analyzed by functional assay. Both USP9Y and DDX3Y overexpression showed suppressive impact on LC cell malignancies. USP9Y overexpression has also been demonstrated to inhibit tumorigenesis in vivo. Based on GEPIA database, it was found that there was a positive correlation between the levels of USP9Y and DDX3Y in LC tissues. The mRNA expression of DDX3Y was not affected by USP9Y overexpression, while its protein levels were significantly up-regulated in USP9Y overexpressed LC cells. Moreover, USP9Y interacted with DDX3Y and has been demonstrated to stabilize DDX3Y expression by preventing its degradation via deubiquitination. In conclusion, USP9Y and DDX3Y exerted antioncogenic effects on the cell proliferation potential, cell cycle process, apoptosis, and tumorigenesis of LC. USP9Y binds to DDX3Y to prevent DDX3Y degradation through deubiquitination.
期刊介绍:
Acta histochemica, a journal of structural biochemistry of cells and tissues, publishes original research articles, short communications, reviews, letters to the editor, meeting reports and abstracts of meetings. The aim of the journal is to provide a forum for the cytochemical and histochemical research community in the life sciences, including cell biology, biotechnology, neurobiology, immunobiology, pathology, pharmacology, botany, zoology and environmental and toxicological research. The journal focuses on new developments in cytochemistry and histochemistry and their applications. Manuscripts reporting on studies of living cells and tissues are particularly welcome. Understanding the complexity of cells and tissues, i.e. their biocomplexity and biodiversity, is a major goal of the journal and reports on this topic are especially encouraged. Original research articles, short communications and reviews that report on new developments in cytochemistry and histochemistry are welcomed, especially when molecular biology is combined with the use of advanced microscopical techniques including image analysis and cytometry. Letters to the editor should comment or interpret previously published articles in the journal to trigger scientific discussions. Meeting reports are considered to be very important publications in the journal because they are excellent opportunities to present state-of-the-art overviews of fields in research where the developments are fast and hard to follow. Authors of meeting reports should consult the editors before writing a report. The editorial policy of the editors and the editorial board is rapid publication. Once a manuscript is received by one of the editors, an editorial decision about acceptance, revision or rejection will be taken within a month. It is the aim of the publishers to have a manuscript published within three months after the manuscript has been accepted