钢筋混凝土结构动态增加系数 (DIF) 的概率模型:贝叶斯方法

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL Structural Safety Pub Date : 2024-01-09 DOI:10.1016/j.strusafe.2024.102430
Dade Lai , Fabrizio Nocera , Cristoforo Demartino , Yan Xiao , Paolo Gardoni
{"title":"钢筋混凝土结构动态增加系数 (DIF) 的概率模型:贝叶斯方法","authors":"Dade Lai ,&nbsp;Fabrizio Nocera ,&nbsp;Cristoforo Demartino ,&nbsp;Yan Xiao ,&nbsp;Paolo Gardoni","doi":"10.1016/j.strusafe.2024.102430","DOIUrl":null,"url":null,"abstract":"<div><p><span>The response of structures under rapidly varying loads can be affected by strain rate sensitivity generally expressed using Dynamic Increase Factor (</span><span><math><mrow><mi>D</mi><mi>I</mi><mi>F</mi></mrow></math></span>). Current models for estimating the <span><math><mrow><mi>D</mi><mi>I</mi><mi>F</mi></mrow></math></span> in Reinforced Concrete (RC) structures are generally deterministic and have restricted applicability due to their dependence on limited experimental data resulting in bias. This paper overcomes these limitations by proposing three probabilistic models that quantify compressive and tensile concrete and steel <span><math><mrow><mi>D</mi><mi>I</mi><mi>F</mi></mrow></math></span><span><span>, accounting for the relevant uncertainties. The proposed models are based on existing deterministic models with the addition of probabilistic correction terms. Bayesian updating<span> is employed to estimate the unknown model parameters using observational data from a large collection of experimental observations. The models incorporate model uncertainties stemming from assumed model form and (potential) missing variables through a model error term. The proposed probabilistic models are used to evaluate the reliability of RC structures under dynamic loads. As an illustration, the proposed probabilistic models are used to estimate the reliability of an example RC column under combined dynamic axial force and moment, and a RC column or beam under dynamic bending moments resulting in cracking. In the two examples, we consider the ACI 318-19 requirements for Ultimate Limit State (ULS) and </span></span>Serviceability Limit States (SLS). In comparison to deterministic </span><span><math><mrow><mi>D</mi><mi>I</mi><mi>F</mi></mrow></math></span> models, the proposed probabilistic models yield enhanced predictive accuracy, presenting a practical and robust approach to assess the structural reliability under impact and blast loads.</p></div>","PeriodicalId":21978,"journal":{"name":"Structural Safety","volume":"108 ","pages":"Article 102430"},"PeriodicalIF":5.7000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic models of dynamic increase factor (DIF) for reinforced concrete structures: A Bayesian approach\",\"authors\":\"Dade Lai ,&nbsp;Fabrizio Nocera ,&nbsp;Cristoforo Demartino ,&nbsp;Yan Xiao ,&nbsp;Paolo Gardoni\",\"doi\":\"10.1016/j.strusafe.2024.102430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The response of structures under rapidly varying loads can be affected by strain rate sensitivity generally expressed using Dynamic Increase Factor (</span><span><math><mrow><mi>D</mi><mi>I</mi><mi>F</mi></mrow></math></span>). Current models for estimating the <span><math><mrow><mi>D</mi><mi>I</mi><mi>F</mi></mrow></math></span> in Reinforced Concrete (RC) structures are generally deterministic and have restricted applicability due to their dependence on limited experimental data resulting in bias. This paper overcomes these limitations by proposing three probabilistic models that quantify compressive and tensile concrete and steel <span><math><mrow><mi>D</mi><mi>I</mi><mi>F</mi></mrow></math></span><span><span>, accounting for the relevant uncertainties. The proposed models are based on existing deterministic models with the addition of probabilistic correction terms. Bayesian updating<span> is employed to estimate the unknown model parameters using observational data from a large collection of experimental observations. The models incorporate model uncertainties stemming from assumed model form and (potential) missing variables through a model error term. The proposed probabilistic models are used to evaluate the reliability of RC structures under dynamic loads. As an illustration, the proposed probabilistic models are used to estimate the reliability of an example RC column under combined dynamic axial force and moment, and a RC column or beam under dynamic bending moments resulting in cracking. In the two examples, we consider the ACI 318-19 requirements for Ultimate Limit State (ULS) and </span></span>Serviceability Limit States (SLS). In comparison to deterministic </span><span><math><mrow><mi>D</mi><mi>I</mi><mi>F</mi></mrow></math></span> models, the proposed probabilistic models yield enhanced predictive accuracy, presenting a practical and robust approach to assess the structural reliability under impact and blast loads.</p></div>\",\"PeriodicalId\":21978,\"journal\":{\"name\":\"Structural Safety\",\"volume\":\"108 \",\"pages\":\"Article 102430\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167473024000018\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167473024000018","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

结构在快速变化荷载作用下的响应会受到应变率敏感性的影响,一般用动态增大系数(DIF)来表示。目前用于估算钢筋混凝土(RC)结构中 DIF 的模型通常是确定性的,由于依赖于有限的实验数据,其适用性受到限制,从而导致偏差。本文克服了这些局限性,提出了三种概率模型来量化混凝土和钢材的抗压和抗拉 DIF,并考虑了相关的不确定性。提出的模型以现有的确定性模型为基础,增加了概率修正项。采用贝叶斯更新法,利用大量实验观测数据对未知模型参数进行估计。这些模型通过模型误差项纳入了由假定模型形式和(潜在)缺失变量引起的模型不确定性。所提出的概率模型用于评估动态载荷下 RC 结构的可靠性。举例说明,建议的概率模型可用于估算在动态轴力和弯矩作用下的钢筋混凝土柱的可靠性,以及在动态弯矩作用下导致开裂的钢筋混凝土柱或梁的可靠性。在这两个例子中,我们考虑了 ACI 318-19 对极限状态 (ULS) 和适用性极限状态 (SLS) 的要求。与确定性 DIF 模型相比,所提出的概率模型提高了预测精度,为评估冲击和爆炸荷载下的结构可靠性提供了一种实用而稳健的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probabilistic models of dynamic increase factor (DIF) for reinforced concrete structures: A Bayesian approach

The response of structures under rapidly varying loads can be affected by strain rate sensitivity generally expressed using Dynamic Increase Factor (DIF). Current models for estimating the DIF in Reinforced Concrete (RC) structures are generally deterministic and have restricted applicability due to their dependence on limited experimental data resulting in bias. This paper overcomes these limitations by proposing three probabilistic models that quantify compressive and tensile concrete and steel DIF, accounting for the relevant uncertainties. The proposed models are based on existing deterministic models with the addition of probabilistic correction terms. Bayesian updating is employed to estimate the unknown model parameters using observational data from a large collection of experimental observations. The models incorporate model uncertainties stemming from assumed model form and (potential) missing variables through a model error term. The proposed probabilistic models are used to evaluate the reliability of RC structures under dynamic loads. As an illustration, the proposed probabilistic models are used to estimate the reliability of an example RC column under combined dynamic axial force and moment, and a RC column or beam under dynamic bending moments resulting in cracking. In the two examples, we consider the ACI 318-19 requirements for Ultimate Limit State (ULS) and Serviceability Limit States (SLS). In comparison to deterministic DIF models, the proposed probabilistic models yield enhanced predictive accuracy, presenting a practical and robust approach to assess the structural reliability under impact and blast loads.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Safety
Structural Safety 工程技术-工程:土木
CiteScore
11.30
自引率
8.60%
发文量
67
审稿时长
53 days
期刊介绍: Structural Safety is an international journal devoted to integrated risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems. Its purpose is to foster communication about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment
期刊最新文献
Bivariate cubic normal distribution for non-Gaussian problems Yet another Bayesian active learning reliability analysis method Improved Bayesian model updating of geomaterial parameters for slope reliability assessment considering spatial variability Editorial Board Data-enhanced design charts for efficient reliability-based design of geotechnical systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1