Rongrong Wang, Rui Tan, Zhenyu Yan, Chris Xiaoxuan Lu
{"title":"电力线交变磁场中的方向感知 3D SLAM","authors":"Rongrong Wang, Rui Tan, Zhenyu Yan, Chris Xiaoxuan Lu","doi":"10.1145/3631446","DOIUrl":null,"url":null,"abstract":"Identifying new sensing modalities for indoor localization is an interest of research. This paper studies powerline-induced alternating magnetic field (AMF) that fills the indoor space for the orientation-aware three-dimensional (3D) simultaneous localization and mapping (SLAM). While an existing study has adopted a uniaxial AMF sensor for SLAM in a plane surface, the design falls short of addressing the vector field nature of AMF and is therefore susceptible to sensor orientation variations. Moreover, although the higher spatial variability of AMF in comparison with indoor geomagnetism promotes location sensing resolution, extra SLAM algorithm designs are needed to achieve robustness to trajectory deviations from the constructed map. To address the above issues, we design a new triaxial AMF sensor and a new SLAM algorithm that constructs a 3D AMF intensity map regularized and augmented by a Gaussian process. The triaxial sensor's orientation estimation is free of the error accumulation problem faced by inertial sensing. From extensive evaluation in eight indoor environments, our AMF-based 3D SLAM achieves sub-1m to 3m median localization errors in spaces of up to 500 m2, sub-2° mean error in orientation sensing, and outperforms the SLAM systems based on Wi-Fi, geomagnetism, and uniaxial AMF by more than 30%.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orientation-Aware 3D SLAM in Alternating Magnetic Field from Powerlines\",\"authors\":\"Rongrong Wang, Rui Tan, Zhenyu Yan, Chris Xiaoxuan Lu\",\"doi\":\"10.1145/3631446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying new sensing modalities for indoor localization is an interest of research. This paper studies powerline-induced alternating magnetic field (AMF) that fills the indoor space for the orientation-aware three-dimensional (3D) simultaneous localization and mapping (SLAM). While an existing study has adopted a uniaxial AMF sensor for SLAM in a plane surface, the design falls short of addressing the vector field nature of AMF and is therefore susceptible to sensor orientation variations. Moreover, although the higher spatial variability of AMF in comparison with indoor geomagnetism promotes location sensing resolution, extra SLAM algorithm designs are needed to achieve robustness to trajectory deviations from the constructed map. To address the above issues, we design a new triaxial AMF sensor and a new SLAM algorithm that constructs a 3D AMF intensity map regularized and augmented by a Gaussian process. The triaxial sensor's orientation estimation is free of the error accumulation problem faced by inertial sensing. From extensive evaluation in eight indoor environments, our AMF-based 3D SLAM achieves sub-1m to 3m median localization errors in spaces of up to 500 m2, sub-2° mean error in orientation sensing, and outperforms the SLAM systems based on Wi-Fi, geomagnetism, and uniaxial AMF by more than 30%.\",\"PeriodicalId\":20553,\"journal\":{\"name\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3631446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
为室内定位确定新的传感模式是一项令人感兴趣的研究。本文研究了电力线引起的交变磁场(AMF),该磁场可填充室内空间,用于方位感知三维(3D)同步定位和绘图(SLAM)。虽然现有研究采用单轴交变磁场传感器在平面上进行 SLAM,但该设计未能解决交变磁场的矢量场特性,因此容易受到传感器方向变化的影响。此外,虽然 AMF 与室内地磁相比具有更高的空间可变性,可提高位置传感分辨率,但仍需要额外的 SLAM 算法设计,以实现轨迹偏离构建地图的鲁棒性。为解决上述问题,我们设计了一种新的三轴 AMF 传感器和一种新的 SLAM 算法,该算法可构建由高斯过程正则化和增强的三维 AMF 强度图。三轴传感器的方位估计不存在惯性传感所面临的误差累积问题。通过在八个室内环境中进行广泛评估,我们基于 AMF 的三维 SLAM 在面积达 500 平方米的空间中实现了低于 1 米至 3 米的中值定位误差,在方位感应中实现了低于 2° 的平均误差,比基于 Wi-Fi、地磁和单轴 AMF 的 SLAM 系统优胜 30% 以上。
Orientation-Aware 3D SLAM in Alternating Magnetic Field from Powerlines
Identifying new sensing modalities for indoor localization is an interest of research. This paper studies powerline-induced alternating magnetic field (AMF) that fills the indoor space for the orientation-aware three-dimensional (3D) simultaneous localization and mapping (SLAM). While an existing study has adopted a uniaxial AMF sensor for SLAM in a plane surface, the design falls short of addressing the vector field nature of AMF and is therefore susceptible to sensor orientation variations. Moreover, although the higher spatial variability of AMF in comparison with indoor geomagnetism promotes location sensing resolution, extra SLAM algorithm designs are needed to achieve robustness to trajectory deviations from the constructed map. To address the above issues, we design a new triaxial AMF sensor and a new SLAM algorithm that constructs a 3D AMF intensity map regularized and augmented by a Gaussian process. The triaxial sensor's orientation estimation is free of the error accumulation problem faced by inertial sensing. From extensive evaluation in eight indoor environments, our AMF-based 3D SLAM achieves sub-1m to 3m median localization errors in spaces of up to 500 m2, sub-2° mean error in orientation sensing, and outperforms the SLAM systems based on Wi-Fi, geomagnetism, and uniaxial AMF by more than 30%.