Yuning Su, Yuhua Jin, Zhengqing Wang, Yonghao Shi, Da-Yuan Huang, Teng Han, Xing-Dong Yang
{"title":"激光驱动的振动触觉渲染","authors":"Yuning Su, Yuhua Jin, Zhengqing Wang, Yonghao Shi, Da-Yuan Huang, Teng Han, Xing-Dong Yang","doi":"10.1145/3631449","DOIUrl":null,"url":null,"abstract":"We investigate the feasibility of a vibrotactile device that is both battery-free and electronic-free. Our approach leverages lasers as a wireless power transfer and haptic control mechanism, which can drive small actuators commonly used in AR/VR and mobile applications with DC or AC signals. To validate the feasibility of our method, we developed a proof-of-concept prototype that includes low-cost eccentric rotating mass (ERM) motors and linear resonant actuators (LRAs) connected to photovoltaic (PV) cells. This prototype enabled us to capture laser energy from any distance across a room and analyze the impact of critical parameters on the effectiveness of our approach. Through a user study, testing 16 different vibration patterns rendered using either a single motor or two motors, we demonstrate the effectiveness of our approach in generating vibration patterns of comparable quality to a baseline, which rendered the patterns using a signal generator.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"12 51","pages":"1 - 25"},"PeriodicalIF":3.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser-Powered Vibrotactile Rendering\",\"authors\":\"Yuning Su, Yuhua Jin, Zhengqing Wang, Yonghao Shi, Da-Yuan Huang, Teng Han, Xing-Dong Yang\",\"doi\":\"10.1145/3631449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the feasibility of a vibrotactile device that is both battery-free and electronic-free. Our approach leverages lasers as a wireless power transfer and haptic control mechanism, which can drive small actuators commonly used in AR/VR and mobile applications with DC or AC signals. To validate the feasibility of our method, we developed a proof-of-concept prototype that includes low-cost eccentric rotating mass (ERM) motors and linear resonant actuators (LRAs) connected to photovoltaic (PV) cells. This prototype enabled us to capture laser energy from any distance across a room and analyze the impact of critical parameters on the effectiveness of our approach. Through a user study, testing 16 different vibration patterns rendered using either a single motor or two motors, we demonstrate the effectiveness of our approach in generating vibration patterns of comparable quality to a baseline, which rendered the patterns using a signal generator.\",\"PeriodicalId\":20553,\"journal\":{\"name\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"volume\":\"12 51\",\"pages\":\"1 - 25\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3631449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
We investigate the feasibility of a vibrotactile device that is both battery-free and electronic-free. Our approach leverages lasers as a wireless power transfer and haptic control mechanism, which can drive small actuators commonly used in AR/VR and mobile applications with DC or AC signals. To validate the feasibility of our method, we developed a proof-of-concept prototype that includes low-cost eccentric rotating mass (ERM) motors and linear resonant actuators (LRAs) connected to photovoltaic (PV) cells. This prototype enabled us to capture laser energy from any distance across a room and analyze the impact of critical parameters on the effectiveness of our approach. Through a user study, testing 16 different vibration patterns rendered using either a single motor or two motors, we demonstrate the effectiveness of our approach in generating vibration patterns of comparable quality to a baseline, which rendered the patterns using a signal generator.