RLoc

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Pub Date : 2024-01-12 DOI:10.1145/3631437
Tianyu Zhang, Dongheng Zhang, Guanzhong Wang, Yadong Li, Yang Hu, Qibin sun, Yan Chen
{"title":"RLoc","authors":"Tianyu Zhang, Dongheng Zhang, Guanzhong Wang, Yadong Li, Yang Hu, Qibin sun, Yan Chen","doi":"10.1145/3631437","DOIUrl":null,"url":null,"abstract":"In recent years, decimeter-level accuracy in WiFi indoor localization has become attainable within controlled environments. However, existing methods encounter challenges in maintaining robustness in more complex indoor environments: angle-based methods are compromised by the significant localization errors due to unreliable Angle of Arrival (AoA) estimations, and fingerprint-based methods suffer from performance degradation due to environmental changes. In this paper, we propose RLoc, a learning-based system designed for reliable localization and tracking. The key design principle of RLoc lies in quantifying the uncertainty level arises in the AoA estimation task and then exploiting the uncertainty to enhance the reliability of localization and tracking. To this end, RLoc first manually extracts the underutilized beamwidth feature via signal processing techniques. Then, it integrates the uncertainty quantification into neural network design through Kullback-Leibler (KL) divergence loss and ensemble techniques. Finally, these quantified uncertainties guide RLoc to optimally leverage the diversity of Access Points (APs) and the temporal continuous information of AoAs. Our experiments, evaluating on two datasets gathered from commercial off-the-shelf WiFi devices, demonstrate that RLoc surpasses state-of-the-art approaches by an average of 36.27% in in-domain scenarios and 20.40% in cross-domain scenarios.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"12 3","pages":"1 - 28"},"PeriodicalIF":3.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RLoc\",\"authors\":\"Tianyu Zhang, Dongheng Zhang, Guanzhong Wang, Yadong Li, Yang Hu, Qibin sun, Yan Chen\",\"doi\":\"10.1145/3631437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, decimeter-level accuracy in WiFi indoor localization has become attainable within controlled environments. However, existing methods encounter challenges in maintaining robustness in more complex indoor environments: angle-based methods are compromised by the significant localization errors due to unreliable Angle of Arrival (AoA) estimations, and fingerprint-based methods suffer from performance degradation due to environmental changes. In this paper, we propose RLoc, a learning-based system designed for reliable localization and tracking. The key design principle of RLoc lies in quantifying the uncertainty level arises in the AoA estimation task and then exploiting the uncertainty to enhance the reliability of localization and tracking. To this end, RLoc first manually extracts the underutilized beamwidth feature via signal processing techniques. Then, it integrates the uncertainty quantification into neural network design through Kullback-Leibler (KL) divergence loss and ensemble techniques. Finally, these quantified uncertainties guide RLoc to optimally leverage the diversity of Access Points (APs) and the temporal continuous information of AoAs. Our experiments, evaluating on two datasets gathered from commercial off-the-shelf WiFi devices, demonstrate that RLoc surpasses state-of-the-art approaches by an average of 36.27% in in-domain scenarios and 20.40% in cross-domain scenarios.\",\"PeriodicalId\":20553,\"journal\":{\"name\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"volume\":\"12 3\",\"pages\":\"1 - 28\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3631437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,在可控环境中,WiFi 室内定位已可达到分米级精度。然而,现有的方法在更复杂的室内环境中保持鲁棒性方面遇到了挑战:基于角度的方法因不可靠的到达角(AoA)估计而导致显著的定位误差,而基于指纹的方法则因环境变化而导致性能下降。在本文中,我们提出了基于学习的 RLoc 系统,旨在实现可靠的定位和跟踪。RLoc 的关键设计原则在于量化在 AoA 估计任务中出现的不确定性水平,然后利用不确定性来提高定位和跟踪的可靠性。为此,RLoc 首先通过信号处理技术手动提取未充分利用的波束宽度特征。然后,它通过库尔巴克-莱布勒(KL)发散损失和集合技术将不确定性量化整合到神经网络设计中。最后,这些量化的不确定性将指导 RLoc 优化利用接入点(AP)的多样性和 AoAs 的时间连续信息。我们在两个从商用现成 WiFi 设备收集的数据集上进行的实验表明,RLoc 在域内场景中平均超越最先进方法 36.27%,在跨域场景中平均超越最先进方法 20.40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RLoc
In recent years, decimeter-level accuracy in WiFi indoor localization has become attainable within controlled environments. However, existing methods encounter challenges in maintaining robustness in more complex indoor environments: angle-based methods are compromised by the significant localization errors due to unreliable Angle of Arrival (AoA) estimations, and fingerprint-based methods suffer from performance degradation due to environmental changes. In this paper, we propose RLoc, a learning-based system designed for reliable localization and tracking. The key design principle of RLoc lies in quantifying the uncertainty level arises in the AoA estimation task and then exploiting the uncertainty to enhance the reliability of localization and tracking. To this end, RLoc first manually extracts the underutilized beamwidth feature via signal processing techniques. Then, it integrates the uncertainty quantification into neural network design through Kullback-Leibler (KL) divergence loss and ensemble techniques. Finally, these quantified uncertainties guide RLoc to optimally leverage the diversity of Access Points (APs) and the temporal continuous information of AoAs. Our experiments, evaluating on two datasets gathered from commercial off-the-shelf WiFi devices, demonstrate that RLoc surpasses state-of-the-art approaches by an average of 36.27% in in-domain scenarios and 20.40% in cross-domain scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
期刊最新文献
Orientation-Aware 3D SLAM in Alternating Magnetic Field from Powerlines UniFi PASTEL Unobtrusive Air Leakage Estimation for Earables with In-ear Microphones PyroSense
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1