Ke He, Chentao Li, Yongjie Duan, Jianjiang Feng, Jie Zhou
{"title":"TrackPose","authors":"Ke He, Chentao Li, Yongjie Duan, Jianjiang Feng, Jie Zhou","doi":"10.1145/3631459","DOIUrl":null,"url":null,"abstract":"Several studies have explored the estimation of finger pose/angle to enhance the expressiveness of touchscreens. However, the accuracy of previous algorithms is limited by large estimation errors, and the sequential output angles are unstable, making it difficult to meet the demands of practical applications. We believe the defect arises from improper rotation representation, the lack of time-series modeling, and the difficulty in accommodating individual differences among users. To address these issues, we conduct in-depth study of rotation representation for the 2D pose problem by minimizing the errors between representation space and original space. A deep learning model, TrackPose, using a self-attention mechanism is proposed for time-series modeling to improve accuracy and stability of finger pose. A registration application on a mobile phone is developed to collect touchscreen images of each new user without the use of optical tracking device. The combination of the three measures mentioned above has resulted in a 33% reduction in the angle estimation error, 47% for the yaw angle especially. Additionally, the instability of sequential estimations, measured by the proposed metric MAEΔ, is reduced by 62%. User study further confirms the effectiveness of our proposed algorithm.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"11 7","pages":"1 - 22"},"PeriodicalIF":3.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TrackPose\",\"authors\":\"Ke He, Chentao Li, Yongjie Duan, Jianjiang Feng, Jie Zhou\",\"doi\":\"10.1145/3631459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several studies have explored the estimation of finger pose/angle to enhance the expressiveness of touchscreens. However, the accuracy of previous algorithms is limited by large estimation errors, and the sequential output angles are unstable, making it difficult to meet the demands of practical applications. We believe the defect arises from improper rotation representation, the lack of time-series modeling, and the difficulty in accommodating individual differences among users. To address these issues, we conduct in-depth study of rotation representation for the 2D pose problem by minimizing the errors between representation space and original space. A deep learning model, TrackPose, using a self-attention mechanism is proposed for time-series modeling to improve accuracy and stability of finger pose. A registration application on a mobile phone is developed to collect touchscreen images of each new user without the use of optical tracking device. The combination of the three measures mentioned above has resulted in a 33% reduction in the angle estimation error, 47% for the yaw angle especially. Additionally, the instability of sequential estimations, measured by the proposed metric MAEΔ, is reduced by 62%. User study further confirms the effectiveness of our proposed algorithm.\",\"PeriodicalId\":20553,\"journal\":{\"name\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"volume\":\"11 7\",\"pages\":\"1 - 22\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3631459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Several studies have explored the estimation of finger pose/angle to enhance the expressiveness of touchscreens. However, the accuracy of previous algorithms is limited by large estimation errors, and the sequential output angles are unstable, making it difficult to meet the demands of practical applications. We believe the defect arises from improper rotation representation, the lack of time-series modeling, and the difficulty in accommodating individual differences among users. To address these issues, we conduct in-depth study of rotation representation for the 2D pose problem by minimizing the errors between representation space and original space. A deep learning model, TrackPose, using a self-attention mechanism is proposed for time-series modeling to improve accuracy and stability of finger pose. A registration application on a mobile phone is developed to collect touchscreen images of each new user without the use of optical tracking device. The combination of the three measures mentioned above has resulted in a 33% reduction in the angle estimation error, 47% for the yaw angle especially. Additionally, the instability of sequential estimations, measured by the proposed metric MAEΔ, is reduced by 62%. User study further confirms the effectiveness of our proposed algorithm.