TrackPose

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Pub Date : 2024-01-12 DOI:10.1145/3631459
Ke He, Chentao Li, Yongjie Duan, Jianjiang Feng, Jie Zhou
{"title":"TrackPose","authors":"Ke He, Chentao Li, Yongjie Duan, Jianjiang Feng, Jie Zhou","doi":"10.1145/3631459","DOIUrl":null,"url":null,"abstract":"Several studies have explored the estimation of finger pose/angle to enhance the expressiveness of touchscreens. However, the accuracy of previous algorithms is limited by large estimation errors, and the sequential output angles are unstable, making it difficult to meet the demands of practical applications. We believe the defect arises from improper rotation representation, the lack of time-series modeling, and the difficulty in accommodating individual differences among users. To address these issues, we conduct in-depth study of rotation representation for the 2D pose problem by minimizing the errors between representation space and original space. A deep learning model, TrackPose, using a self-attention mechanism is proposed for time-series modeling to improve accuracy and stability of finger pose. A registration application on a mobile phone is developed to collect touchscreen images of each new user without the use of optical tracking device. The combination of the three measures mentioned above has resulted in a 33% reduction in the angle estimation error, 47% for the yaw angle especially. Additionally, the instability of sequential estimations, measured by the proposed metric MAEΔ, is reduced by 62%. User study further confirms the effectiveness of our proposed algorithm.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"11 7","pages":"1 - 22"},"PeriodicalIF":3.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TrackPose\",\"authors\":\"Ke He, Chentao Li, Yongjie Duan, Jianjiang Feng, Jie Zhou\",\"doi\":\"10.1145/3631459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several studies have explored the estimation of finger pose/angle to enhance the expressiveness of touchscreens. However, the accuracy of previous algorithms is limited by large estimation errors, and the sequential output angles are unstable, making it difficult to meet the demands of practical applications. We believe the defect arises from improper rotation representation, the lack of time-series modeling, and the difficulty in accommodating individual differences among users. To address these issues, we conduct in-depth study of rotation representation for the 2D pose problem by minimizing the errors between representation space and original space. A deep learning model, TrackPose, using a self-attention mechanism is proposed for time-series modeling to improve accuracy and stability of finger pose. A registration application on a mobile phone is developed to collect touchscreen images of each new user without the use of optical tracking device. The combination of the three measures mentioned above has resulted in a 33% reduction in the angle estimation error, 47% for the yaw angle especially. Additionally, the instability of sequential estimations, measured by the proposed metric MAEΔ, is reduced by 62%. User study further confirms the effectiveness of our proposed algorithm.\",\"PeriodicalId\":20553,\"journal\":{\"name\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"volume\":\"11 7\",\"pages\":\"1 - 22\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3631459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

一些研究探讨了手指姿势/角度的估计,以增强触摸屏的表现力。然而,以往算法的准确性受限于较大的估计误差,且连续输出的角度不稳定,难以满足实际应用的需求。我们认为,造成这种缺陷的原因是旋转表示不当、缺乏时间序列建模以及难以照顾到用户的个体差异。针对这些问题,我们通过最小化表示空间与原始空间之间的误差,对二维姿势问题的旋转表示进行了深入研究。我们提出了一种深度学习模型 TrackPose,它采用自我关注机制进行时间序列建模,以提高手指姿势的准确性和稳定性。在手机上开发了一个注册应用程序,无需使用光学跟踪设备即可收集每个新用户的触摸屏图像。结合上述三种措施,角度估计误差减少了 33%,尤其是偏航角误差减少了 47%。此外,用提出的指标 MAEΔ 来衡量,连续估计的不稳定性降低了 62%。用户研究进一步证实了我们提出的算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TrackPose
Several studies have explored the estimation of finger pose/angle to enhance the expressiveness of touchscreens. However, the accuracy of previous algorithms is limited by large estimation errors, and the sequential output angles are unstable, making it difficult to meet the demands of practical applications. We believe the defect arises from improper rotation representation, the lack of time-series modeling, and the difficulty in accommodating individual differences among users. To address these issues, we conduct in-depth study of rotation representation for the 2D pose problem by minimizing the errors between representation space and original space. A deep learning model, TrackPose, using a self-attention mechanism is proposed for time-series modeling to improve accuracy and stability of finger pose. A registration application on a mobile phone is developed to collect touchscreen images of each new user without the use of optical tracking device. The combination of the three measures mentioned above has resulted in a 33% reduction in the angle estimation error, 47% for the yaw angle especially. Additionally, the instability of sequential estimations, measured by the proposed metric MAEΔ, is reduced by 62%. User study further confirms the effectiveness of our proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
期刊最新文献
Orientation-Aware 3D SLAM in Alternating Magnetic Field from Powerlines UniFi PASTEL Unobtrusive Air Leakage Estimation for Earables with In-ear Microphones PyroSense
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1