Twisha Titirsha, Md. Maruf Hossain Shuvo, John M. Gahl, Syed Kamrul Islam
{"title":"基于物理的垂直 Ga2O3 FinFET 表面电势和漏电流建模","authors":"Twisha Titirsha, Md. Maruf Hossain Shuvo, John M. Gahl, Syed Kamrul Islam","doi":"10.1063/5.0181720","DOIUrl":null,"url":null,"abstract":"Gallium oxide (Ga2O3) is a promising ultra-wide bandgap material offering a large bandgap (>4.7 eV) and high critical electric fields. The increasing demand for electronic devices for high-power applications in electric automobiles, high-performance computing, green energy technologies, etc., requires higher voltages and currents with enhanced efficiency. Vertical transistors, such as fin-shaped field-effect transistors (FinFETs) have emerged to meet the growing need with improved current handling capabilities, reduced resistance, and enhanced thermal performance. However, to fully exploit the Ga2O3 power transistors, precise and reliable physics-driven models are crucial. Therefore, a comprehensive surface potential model has been developed in this work for a vertical Ga2O3 FinFET. The electric potential across the channel is explained by analyzing the two-dimensional (2D) Poisson equation employing parabolic approximation. Such a surface potential model is instrumental in determining the performance of the Ga2O3 FinFET as it affects the threshold voltage, the drain current, and fringing capacitance. Exploiting the surface potentials, a fringing capacitance model is derived which is crucial in analyzing the speed of the device in compact integrated circuits. In addition, statistical analysis of the Ga2O3 FinFET using the Monte Carlo simulation technique is performed to determine the leakage current fluctuation due to doping variations. The validation of the analytical model with experimental results confirms the effectiveness and prospects of the developed models in the rapid development and characterization of next-generation high-performance vertical Ga2O3 power transistors.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"5 14","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-based modeling of surface potential and leakage current for vertical Ga2O3 FinFET\",\"authors\":\"Twisha Titirsha, Md. Maruf Hossain Shuvo, John M. Gahl, Syed Kamrul Islam\",\"doi\":\"10.1063/5.0181720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gallium oxide (Ga2O3) is a promising ultra-wide bandgap material offering a large bandgap (>4.7 eV) and high critical electric fields. The increasing demand for electronic devices for high-power applications in electric automobiles, high-performance computing, green energy technologies, etc., requires higher voltages and currents with enhanced efficiency. Vertical transistors, such as fin-shaped field-effect transistors (FinFETs) have emerged to meet the growing need with improved current handling capabilities, reduced resistance, and enhanced thermal performance. However, to fully exploit the Ga2O3 power transistors, precise and reliable physics-driven models are crucial. Therefore, a comprehensive surface potential model has been developed in this work for a vertical Ga2O3 FinFET. The electric potential across the channel is explained by analyzing the two-dimensional (2D) Poisson equation employing parabolic approximation. Such a surface potential model is instrumental in determining the performance of the Ga2O3 FinFET as it affects the threshold voltage, the drain current, and fringing capacitance. Exploiting the surface potentials, a fringing capacitance model is derived which is crucial in analyzing the speed of the device in compact integrated circuits. In addition, statistical analysis of the Ga2O3 FinFET using the Monte Carlo simulation technique is performed to determine the leakage current fluctuation due to doping variations. The validation of the analytical model with experimental results confirms the effectiveness and prospects of the developed models in the rapid development and characterization of next-generation high-performance vertical Ga2O3 power transistors.\",\"PeriodicalId\":15088,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":\"5 14\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0181720\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0181720","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Physics-based modeling of surface potential and leakage current for vertical Ga2O3 FinFET
Gallium oxide (Ga2O3) is a promising ultra-wide bandgap material offering a large bandgap (>4.7 eV) and high critical electric fields. The increasing demand for electronic devices for high-power applications in electric automobiles, high-performance computing, green energy technologies, etc., requires higher voltages and currents with enhanced efficiency. Vertical transistors, such as fin-shaped field-effect transistors (FinFETs) have emerged to meet the growing need with improved current handling capabilities, reduced resistance, and enhanced thermal performance. However, to fully exploit the Ga2O3 power transistors, precise and reliable physics-driven models are crucial. Therefore, a comprehensive surface potential model has been developed in this work for a vertical Ga2O3 FinFET. The electric potential across the channel is explained by analyzing the two-dimensional (2D) Poisson equation employing parabolic approximation. Such a surface potential model is instrumental in determining the performance of the Ga2O3 FinFET as it affects the threshold voltage, the drain current, and fringing capacitance. Exploiting the surface potentials, a fringing capacitance model is derived which is crucial in analyzing the speed of the device in compact integrated circuits. In addition, statistical analysis of the Ga2O3 FinFET using the Monte Carlo simulation technique is performed to determine the leakage current fluctuation due to doping variations. The validation of the analytical model with experimental results confirms the effectiveness and prospects of the developed models in the rapid development and characterization of next-generation high-performance vertical Ga2O3 power transistors.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces